952 resultados para gravity gradient
Resumo:
The constitution of the ternary mattes CU2S-FeS-PbS has never been completely investigated. Fulton and Goodner 1) have investigated the binary mattes CU2S-FeS, CU2S-PbS, PbSFeS and have shown that the three binaries show eutectics. There has been no attempt however to draw the complete ternary diagram. The following work is intended to be a contribution toward the completion of this diagram by first of all pointing out those mattes which separate on melting into two layers, and second by determining the specific gravities of mattes of different compositions.
Resumo:
Non-sorted circles, non-sorted polygons, and earth hummocks are common ground-surface features ill arctic regions. The), are caused by a variety of physical processes that Occur in permafrost regions including contraction cracking and frost heave. Here we describe the vegetation of patterned-ground forms on zonal sites at three location!: along an N-S transect through the High Arctic of Canada. We made 75 releves on patterned-ground features (circles, polygons, earth hummocks) and adjacent tundra (Interpolygon, intercircle, interhummock areas) and identified and classified the vegetation according to the Braun-Blanquet Method. Environmental factors were correlated with the vegetation data using a nonmetric multidimensional scaling ordination (NMDS). We identified eleven commnunities: (1) Puccinellia angustata-Papaver radicalum community in xeromesic non-sorted polygons of subzone A of the Circumpolar Arctic Vegetation Map; (2) Saxifraga-Parmelia omphalodes ssp. glacialis community in hydromesic interpolygon areas of subzone A; (3) Hypogymnia subobscura-Lecanora epibryon community In xeromesic non-sorted polygons of subzone B; (4) Orthotrichum speciosum-Salix arctica community In xeromesic interpolygon areas of subzone B; (5) Cochlearia groenlandica-Luzula nivalis community in hydromesic earth Mocks Of subzone B; (6) Salix arctica-Eriophorum angustifolium ssp. triste community in hygric earth hummocks of subzone 13; (7) Puccinellia angustata-Potentilla vahliana community in xeromesic non-sorted circles and bare patches of subzone Q (8) Dryas integrifolia-Carex rupestris community in xeromesic intercircle areas and vegetated patches of subzone C; (9) Braya glabella ssp. purpurascens-Dryas integrifolia community In hydromesic non-sorted circles of subzone Q (10) Dryas integrifolia-Carex aquatilis community in hydromesic intercircle areas of subzone C; and (11) Eriophorum angustifolium ssp. triste-Carex aquatilis community ill hygric intercircle areas of subzone C. The NMDS ordination displayed the vegetation types with respect to complex environmental gradients. The first axis of the ordination corresponds to a complex soil moisture gradient and the second axis corresponds to a complex geology/elevation/climate gradient. The tundra plots have a greater moss and graminoid cover than the adjacent frost-heave communities. In general, frost-heave features have greater thaw depths, more bare ground, thinner organic horizons, and lower soil moisture than the surrounding tundra. The morphology of the investigated patterned ground forms changes along the climatic gradient, with non-sorted pollygons dominating in the northernmost sites and non-sorted circles dominating, in the southern sites.
Resumo:
This study defines the feasibility of utilizing three-dimensional (3D) gradient-echo (GRE) MRI at 1.5T for T(2)* mapping to assess hip joint cartilage degenerative changes using standard morphological MR grading while comparing it to delayed gadolinium-enhanced MRI of cartilage (dGEMRIC). MRI was obtained from 10 asymptomatic young adult volunteers and 33 patients with symptomatic femoroacetabular impingement (FAI). The protocol included T(2)* mapping without gadolinium-enhancement utilizing a 3D-GRE sequence with six echoes, and after gadolinium injection, routine hip sequences, and a dual-flip-angle 3D-GRE sequence for dGEMRIC T(1) mapping. Cartilage was classified as normal, with mild changes, or with severe degenerative changes based on morphological MRI. T(1) and T(2)* findings were subsequently correlated. There were significant differences between volunteers and patients in normally-rated cartilage only for T(1) values. Both T(1) and T(2)* values decreased significantly with the various grades of cartilage damage. There was a statistically significant correlation between standard MRI and T(2)* (T(1)) (P < 0.05). High intraclass correlation was noted for both T(1) and T(2)*. Correlation factor was 0.860 to 0.954 (T(2)*-T(1) intraobserver) and 0.826 to 0.867 (T(2)*-T(1) interobserver). It is feasible to gather further information about cartilage status within the hip joint using GRE T(2)* mapping at 1.5T.
Resumo:
Contention-based MAC protocols follow periodic listen/sleep cycles. These protocols face the problem of virtual clustering if different unsynchronized listen/sleep schedules occur in the network, which has been shown to happen in wireless sensor networks. To interconnect these virtual clusters, border nodes maintaining all respective listen/sleep schedules are required. However, this is a waste of energy, if locally a common schedule can be determined. We propose to achieve local synchronization with a mechanism that is similar to gravitation. Clusters represent the mass, whereas synchronization messages sent by each cluster represent the gravitation force of the according cluster. Due to the mutual attraction caused by the clusters, all clusters merge finally. The exchange of synchronization messages itself is not altered by LACAS. Accordingly, LACAS introduces no overhead. Only a not yet used property of synchronization mechanisms is exploited.