881 resultados para glucose syrup
Resumo:
Uridine 5′-diphosphate-glucose (UDP-Glc) is transported into the lumen of the Golgi cisternae, where is used for polysaccharide biosynthesis. When Golgi vesicles were incubated with UDP-[3H]Glc, [3H]Glc was rapidly transferred to endogenous acceptors and UDP-Glc was undetectable in Golgi vesicles. This result indicated that a uridine-containing nucleotide was rapidly formed in the Golgi vesicles. Since little is known about the fate of the nucleotide derived from UDP-Glc, we analyzed the metabolism of the nucleotide moiety of UDP-Glc by incubating Golgi vesicles with [α-32P]UDP-Glc, [β-32P]UDP-Glc, and [3H]UDP-Glc and identifying the resulting products. After incubation of Golgi vesicles with these radiolabeled substrates we could detect only uridine 5′-monophosphate (UMP) and inorganic phosphate (Pi). UDP could not be detected, suggesting a rapid hydrolysis of UDP by the Golgi UDPase. The by-products of UDP hydrolysis, UMP and Pi, did not accumulate in the lumen, indicating that they were able to exit the Golgi lumen. The exit of UMP was stimulated by UDP-Glc, suggesting the presence of a putative UDP-Glc/UMP antiporter in the Golgi membrane. However, the exit of Pi was not stimulated by UDP-Glc, suggesting that the exit of Pi occurs via an independent membrane transporter.
Resumo:
Lysine (Lys)-195 in the homotetrameric ADP-glucose pyrophosphorylase (ADPGlc PPase) from Escherichia coli was shown previously to be involved in the binding of the substrate glucose-1-phosphate (Glc-1-P). This residue is highly conserved in the ADPGlc PPase family. Site-directed mutagenesis was used to investigate the function of this conserved Lys residue in the large and small subunits of the heterotetrameric potato (Solanum tuberosum) tuber enzyme. The apparent affinity for Glc-1-P of the wild-type enzyme decreased 135- to 550-fold by changing Lys-198 of the small subunit to arginine, alanine, or glutamic acid, suggesting that both the charge and the size of this residue influence Glc-1-P binding. These mutations had little effect on the kinetic constants for the other substrates (ATP and Mg2+ or ADP-Glc and inorganic phosphate), activator (3-phosphoglycerate), inhibitor (inorganic phosphate), or on the thermal stability. Mutagenesis of the corresponding Lys (Lys-213) in the large subunit had no effect on the apparent affinity for Glc-1-P by substitution with arginine, alanine, or glutamic acid. A double mutant, SK198RLK213R, was also obtained that had a 100-fold reduction of the apparent affinity for Glc-1-P. The data indicate that Lys-198 in the small subunit is directly involved in the binding of Glc-1-P, whereas they appear to exclude a direct role of Lys-213 in the large subunit in the interaction with this substrate.
Resumo:
An NADPH-dependent NO2−-reducing system was reconstituted in vitro using ferredoxin (Fd) NADP+ oxidoreductase (FNR), Fd, and nitrite reductase (NiR) from the green alga Chlamydomonas reinhardtii. NO2− reduction was dependent on all protein components and was operated under either aerobic or anaerobic conditions. NO2− reduction by this in vitro pathway was inhibited up to 63% by 1 mm NADP+. NADP+ did not affect either methyl viologen-NiR or Fd-NiR activity, indicating that inhibition was mediated through FNR. When NADPH was replaced with a glucose-6-phosphate dehydrogenase (G6PDH)-dependent NADPH-generating system, rates of NO2− reduction reached approximately 10 times that of the NADPH-dependent system. G6PDH could be replaced by either 6-phosphogluconate dehydrogenase or isocitrate dehydrogenase, indicating that G6PDH functioned to: (a) regenerate NADPH to support NO2− reduction and (b) consume NADP+, releasing FNR from NADP+ inhibition. These results demonstrate the ability of FNR to facilitate the transfer of reducing power from NADPH to Fd in the direction opposite to that which occurs in photosynthesis. The rate of G6PDH-dependent NO2− reduction observed in vitro is capable of accounting for the observed rates of dark NO3− assimilation by C. reinhardtii.
Resumo:
The intracellular location of ADP-glucose pyrophosphorylase (AGP) in developing pericarp of tomato (Lycopersicon esculentum Mill) has been investigated by immunolocalization. With the use of a highly specific anti-tomato fruit AGP antibody, the enzyme was localized in cytoplasm as well as plastids at both the light and electron microscope levels. The immunogold particles in plastids were localized in the stroma and at the surface of the starch granule, whereas those in the cytoplasm occurred in cluster-like patterns. Contrary to the fruit, the labeling in tomato leaf cells occurred exclusively in the chloroplasts. These data demonstrate that AGP is localized to both the cytoplasm and plastids in developing pericarp cells of tomato.
Resumo:
Glucose (Glc) starvation of suspension-cultured carrot (Daucus carota L.) cells resulted in sequential activation of phospholipid catabolic enzymes. Among the assayed enzymes involved in the degradation, phospholipase D (PLD) and lipolytic acyl hydrolase were activated at the early part of starvation, and these activities were followed by β-oxidation and the glyoxylate cycle enzymes in order. The activity of PLD and lipolytic acyl hydrolase was further confirmed by in vivo-labeling experiments. It was demonstrated that Glc added to a medium containing starving cells inhibited the phospholipid catabolic activities, indicating that phospholipid catabolism is negatively regulated by Glc. There was a burst of ethylene production 6 h after starvation. Ethylene added exogeneously to a Glc-sufficient medium activated PLD, indicating that ethylene acts as an element in the signal transduction pathway leading from Glc depletion to PLD activation. Activation of lipid peroxidation, suggestive of cell death, occurred immediately after the decrease of the phospholipid degradation, suggesting that the observed phospholipid catabolic pathway is part of the metabolic strategies by which cells effectively survive under Glc starvation.
Resumo:
A highly purified preparation of uridine 5′-diphosphate (UDP)-glucose (Glc) dehydrogenase (DH; EC 1.1.1.22) has been characterized from soybean (Glycine max L.) nodules. The enzyme had native and subunit molecular masses of approximately 272 and 50 kD, respectively. UDP-Glc DH displayed typical hyperbolic substrate kinetics and had Km values for UDP-Glc and NAD+ of 0.05 and 0.12 mm, respectively. Thymidine 5′-diphosphate-Glc and UDP-galactose could replace UDP-Glc as the sugar nucleotide substrate to some extent, but the enzyme had no activity with NADP+. Soybean nodule UDP-Glc DH was labile in the absence of NAD+ and was inhibited by a heat-stable, low-molecular-mass solute in crude extracts of soybean nodules. UDP-Glc DH was also isolated from developing soybean seeds and shoots of 5-d-old wheat and canola seedlings and was shown to have similar affinities for UDP-Glc and NAD+ as those of the soybean nodule enzyme. UDP-Glc DH from all of these sources was most active in young, rapidly growing tissues.
Resumo:
Glucose is the preferred carbon source for most eukaryotic cells and has profound effects on many cellular functions. How cells sense glucose and transduce a signal into the cell is a fundamental, unanswered question. Here we describe evidence that two unusual glucose transporters in the yeast Saccharomyces cerevisiae serve as glucose sensors that generate an intracellular glucose signal. The Snf3p high-affinity glucose transporter appears to function as a low glucose sensor, since it is required for induction of expression of several hexose transporter (HXT) genes, encoding glucose transporters, by low levels of glucose. We have identified another apparent glucose transporter, Rgt2p, that is strikingly similar to Snf3p and is required for maximal induction of gene expression in response to high levels of glucose. This suggests that Rgt2p is a high glucose-sensing counterpart to Snf3p. We identified a dominant mutation in RGT2 that causes constitutive expression of several HXT genes, even in the absence of the inducer glucose. This same mutation introduced into SNF3 also causes glucose-independent expression of HXT genes. Thus, the Rgt2p and Snf3p glucose transporters appear to act as glucose receptors that generate an intracellular glucose signal, suggesting that glucose signaling in yeast is a receptor-mediated process.
Resumo:
Interaction of the activated insulin receptor (IR) with its substrate, insulin receptor substrate 1 (IRS-1), via the phosphotyrosine binding domain of IRS-1 and the NPXY motif centered at phosphotyrosine 960 of the IR, is important for IRS-1 phosphorylation. We investigated the role of this interaction in the insulin signaling pathway that stimulates glucose transport. Utilizing microinjection of competitive inhibitory reagents in 3T3-L1 adipocytes, we have found that disruption of the IR/IRS-1 interaction has no effect upon translocation of the insulin-responsive glucose transporter (GLUT4). The activity of these reagents was demonstrated by their ability to block insulin stimulation of two distinct insulin bioeffects, membrane ruffling and mitogenesis, in 3T3-L1 adipocytes and insulin-responsive rat 1 fibroblasts. These data suggest that phosphorylated IRS-1 is not an essential component of the metabolic insulin signaling pathway that leads to GLUT4 translocation, yet it appears to be required for other insulin bioeffects.
Resumo:
Expression of glucokinase in hepatocytes and pancreatic 6-cells is of major physiologic importance to mammalian glucose homeostasis. Liver glucokinase catalyzes the first committed step in the disposal of glucose, and beta-cell glucokinase catalyzes a rate-limiting step required for glucose-regulated insulin release. The present study reports the expression of glucokinase in rat glucagon-producing alpha-cells, which are negatively regulated by glucose. Purified rat alpha-cells express glucokinase mRNA and protein with the same transcript length, nucleotide sequence, and immunoreactivity as the beta-cell isoform. Glucokinase activity accounts for more than 50% of glucose phosphorylation in extracts of alpha-cells and for more than 90% of glucose utilization in intact cells. The glucagon-producing tumor MSL-G-AN also contained glucokinase mRNA, protein, and enzymatic activity. These data indicate that glucokinase may serve as a metabolic glucose sensor in pancreatic alpha-cells and, hence, mediate a mechanism for direct regulation of glucagon release by extracellular glucose. Since these cells do not express Glut2, we suggest that glucose sensing does not necessarily require the coexpression of Glut2 and glucokinase.
Resumo:
Several lines of evidence indicate that a modest increase in circulating glucose levels enhances memory. One mechanism underlying glucose effects on memory may be an increase in acetylcholine (ACh) release. The present experiment determined whether enhancement of spontaneous alternation performance by systemic glucose treatment is related to an increase in hippocampal ACh output. Samples of extracellular ACh were assessed at 12-min intervals using in vivo microdialysis with HPLC-EC. Twenty-four minutes after an intraperitoneal injection of saline or glucose (100, 250, or 1000 mg/kg), rats were tested in a four-arm cross maze for spontaneous alternation behavior combined with microdialysis collection. Glucose at 250 mg/kg, but not 100 or 1000 mg/kg, produced an increase in spontaneous alternation scores (69.5%) and ACh output (121.5% versus baseline) compared to alternation scores (44.7%) and ACh output (58.9% versus baseline) of saline controls. The glucose-induced increase in alternation scores and ACh output was not secondary to changes in locomotor activity. Saline and glucose (100-1000 mg/kg) treatment had no effect on hippocampal ACh output when rats remained in the holding chamber. These findings suggest that glucose may enhance memory by directly or indirectly increasing the release of ACh. The results also indicate that hippocampal ACh release is increased in rats performing a spatial task. Moreover, because glucose enhanced ACh output only during behavioral testing, circulating glucose may modulate ACh release only under conditions in which cholinergic cells are activated.
Resumo:
Mutations in the obese (ob) gene lead to obesity. This gene has been recently cloned, but the factors regulating its expression have not been elucidated. To address the regulation of the ob gene with regard to body weight and nutritional factors, Northern blot analysis was used to assess ob mRNA in adipose tissue from mice [lean, obese due to diet, or genetically (yellow agouti) obese] under different nutritional conditions. ob mRNA was elevated in both forms of obesity, compared to lean controls, correlated with elevations in plasma insulin and body weight, but not plasma glucose. In lean C57BL/6J mice, but not in mice with diet-induced obesity, ob mRNA decreased after a 48-hr fast. Similarly, in lean C57BL/6J controls, but not in obese yellow mice, i.p. glucose injection significantly increased ob mRNA. For up to 30 min after glucose injection, ob mRNA in lean mice significantly correlated with plasma glucose, but not with plasma insulin. In a separate study with only lean mice, ob mRNA was inhibited >90% by fasting, and elevated approximately 2-fold 30 min after i.p. injection of either glucose or insulin. These results suggest that in lean animals glucose and insulin enhance ob gene expression. In contrast to our results in lean mice, in obese animals ob mRNA is elevated and relatively insensitive to nutritional state, possibly due to chronic exposure to elevated plasma insulin and/or glucose.
Resumo:
Adult Schistosoma mansoni blood flukes reside in the mesenteric veins of their vertebrate hosts, where they absorb immense quantities of glucose through their tegument by facilitated diffusion. Previously, we obtained S. mansoni cDNAs encoding facilitated-diffusion schistosome glucose transporter proteins 1 and 4 (SGTP1 and SGTP4) and localized SGTP1 to the basal membranes of the tegument and the underlying muscle. In this study, we characterize the expression and localization of SGTP4 during the schistosome life cycle. Antibodies specific to SGTP4 appear to stain only the double-bilayer, apical membranes of the adult parasite tegument, revealing an asymmetric distribution relative to the basal transporter SGTP1. On living worms, SGTP4 is available to surface biotinylation, suggesting that it is exposed at the hose-parasite interface. SGTP4 is detected shortly after the transformation of free-living, infectious cercariae into schistosomula and coincides with the appearance of the double membrane. Within 15 min after transformation, anti-SGTP4 staining produces a bright, patchy distribution at the surface of schistosomula, which becomes contiguous over the entire surface of the schistosomula by 24 hr after transformation. SGTP4 is not detected in earlier developmental stages (eggs, sporocysts, and cercariae) that do not possess the specialized double membrane. Thus, SGTP4 appears to be expressed only in the mammalian stages of the parasite's life cycle and specifically localized within the host-interactive, apical membranes of the tegument.
Resumo:
Elevation in the rate of glucose transport in polyoma virus-infected mouse fibroblasts was dependent upon phosphatidylinositol 3-kinase (PI 3-kinase; EC 2.7.1.137) binding to complexes of middle tumor antigen (middle T) and pp60c-src. Wild-type polyoma virus infection led to a 3-fold increase in the rate of 2-deoxyglucose (2DG) uptake, whereas a weakly transforming polyoma virus mutant that encodes a middle T capable of activating pp60c-src but unable to promote binding of PI 3-kinase induced little or no change in the rate of 2DG transport. Another transformation-defective mutant encoding a middle T that retains functional binding of both pp60c-src and PI 3-kinase but is incapable of binding Shc (a protein involved in activation of Ras) induced 2DG transport to wild-type levels. Wortmannin (< or = 100 nM), a known inhibitor of PI 3-kinase, blocked elevation of glucose transport in wild-type virus-infected cells. In contrast to serum stimulation, which led to increased levels of glucose transporter 1 (GLUT1) RNA and protein, wild-type virus infection induced no significant change in levels of either GLUT1 RNA or protein. Nevertheless, virus-infected cells did show increases in GLUT1 protein in plasma membranes. These results point to a posttranslational mechanism in the elevation of glucose transport by polyoma virus middle T involving activation of PI 3-kinase and translocation of GLUT1.
Resumo:
Insulin secretion has been studied in isolated rat pancreatic islets under stringent Ca(2+)-depleted, Ca(2+)-free conditions. Under these conditions, the effect of 16.7 mM glucose to stimulate insulin release was abolished. Forskolin, which activates adenylyl cyclase, also failed to stimulate release in the presence of either low or high glucose concentrations. A phorbol ester (phorbol 12-myristate 13-acetate; PMA) increased the release rate slightly and this was further increased by 16.7 mM glucose. Remarkably, in the presence of both forskolin and PMA, 16.7 mM glucose strongly augmented insulin release. The augmentation was concentration dependent and monophasic and had a temporal profile similar to the "second phase" of glucose-stimulated insulin release, which is seen under normal conditions when Ca2+ is present. Metabolism is required for the effect because mannoheptulose abolished the glucose response. Other nutrient secretagogues, alpha-ketoisocaproate, and the combination of leucine and glutamine augmented release under the same conditions. Norepinephrine, a physiological inhibitor of insulin secretion, totally blocked the stimulation of release by forskolin and PMA and the augmentation of release by glucose. Thus, under the stringent Ca(2+)-free conditions imposed, the stimulation of insulin release by forskolin and PMA, as well as the augmentation of release by glucose, is under normal physiological control. As no increase in intracellular [Ca2+] was observed, the results demonstrate that glucose can increase the rate of exocytosis and insulin release by pancreatic islets in a Ca(2+)-independent manner. This interesting pathway of stimulus-secretion coupling for glucose appears to exert its effect at a site beyond the usual elevation of intracellular [Ca2+] and is not due to an activation by glucose of protein kinase A or C.