994 resultados para geology
Resumo:
Es proposen uns milloraments en la metodologia classica de determinació qualitativa dels minerals de la fraccio argila en sediments i sbls sorrencs. L'extraccioconstade: garbellament de la mostra amb un garbelladorde2 mmde pas; eliminacio de la materia organica amb aigua oxigenada; centnfugacio a 6.000 r. p. m.; garbellament en humit per 0,2 mm, agitamenc dispersio amb calgon; decantacio i sifonat; centrifugació i desecacio. Nova dispersio per a la preparacio d'agregats onentats i sedimentacio sobre els «portes» dins de plaques de Petri. Aixi queden a punt d'obtenir els diagrames roentgen. Per I'espectroscbpia de raigs infrarojos, es dispersen les mostres i, a més de les mostres «normals», es tracten amb malaquita o bencidina. Diferents exemples il.lustren el treball.
Resumo:
The present research deals with an important public health threat, which is the pollution created by radon gas accumulation inside dwellings. The spatial modeling of indoor radon in Switzerland is particularly complex and challenging because of many influencing factors that should be taken into account. Indoor radon data analysis must be addressed from both a statistical and a spatial point of view. As a multivariate process, it was important at first to define the influence of each factor. In particular, it was important to define the influence of geology as being closely associated to indoor radon. This association was indeed observed for the Swiss data but not probed to be the sole determinant for the spatial modeling. The statistical analysis of data, both at univariate and multivariate level, was followed by an exploratory spatial analysis. Many tools proposed in the literature were tested and adapted, including fractality, declustering and moving windows methods. The use of Quan-tité Morisita Index (QMI) as a procedure to evaluate data clustering in function of the radon level was proposed. The existing methods of declustering were revised and applied in an attempt to approach the global histogram parameters. The exploratory phase comes along with the definition of multiple scales of interest for indoor radon mapping in Switzerland. The analysis was done with a top-to-down resolution approach, from regional to local lev¬els in order to find the appropriate scales for modeling. In this sense, data partition was optimized in order to cope with stationary conditions of geostatistical models. Common methods of spatial modeling such as Κ Nearest Neighbors (KNN), variography and General Regression Neural Networks (GRNN) were proposed as exploratory tools. In the following section, different spatial interpolation methods were applied for a par-ticular dataset. A bottom to top method complexity approach was adopted and the results were analyzed together in order to find common definitions of continuity and neighborhood parameters. Additionally, a data filter based on cross-validation was tested with the purpose of reducing noise at local scale (the CVMF). At the end of the chapter, a series of test for data consistency and methods robustness were performed. This lead to conclude about the importance of data splitting and the limitation of generalization methods for reproducing statistical distributions. The last section was dedicated to modeling methods with probabilistic interpretations. Data transformation and simulations thus allowed the use of multigaussian models and helped take the indoor radon pollution data uncertainty into consideration. The catego-rization transform was presented as a solution for extreme values modeling through clas-sification. Simulation scenarios were proposed, including an alternative proposal for the reproduction of the global histogram based on the sampling domain. The sequential Gaussian simulation (SGS) was presented as the method giving the most complete information, while classification performed in a more robust way. An error measure was defined in relation to the decision function for data classification hardening. Within the classification methods, probabilistic neural networks (PNN) show to be better adapted for modeling of high threshold categorization and for automation. Support vector machines (SVM) on the contrary performed well under balanced category conditions. In general, it was concluded that a particular prediction or estimation method is not better under all conditions of scale and neighborhood definitions. Simulations should be the basis, while other methods can provide complementary information to accomplish an efficient indoor radon decision making.
Resumo:
La evolución sedimentaria del Muschelkalk inferior de las cadenas costero catalanas se caracteriza por una primera secuencia de profundización, seguida por una segunda secuencia de somerización, constituída por pequeños ciclos somerizantes. Las dos secuencias están separadas por una discontinuidad estratigráfica de carácter regional. El tramo superior de la primera secuencia está dolomitizado por procesos de dolomitización secundaria él partir de la discontinuidad estratigráfica regional; en otros dominios de los Catalánides. la dolomitización puede afectar a casi toda la secuencia. La segunda secuencia está constituída por dolomías de tipo primario. El Muschelkalk inferior del dominio Montseny-L1obregat se diferencia del resto de los Catalánides, principalmente por existencia, en la secuencia de profundización, de cuatro rupturas sedimentarias interpretadas como superficies karstificadas intra-Muschclkalk. Todo el Muschelkalk inferior se desarrolla en facies mareales en un contexto de rampa carbonatada tipo homoclinal rampo. El estudio palinológico confirma una edad Anisiense medio-superior.
Resumo:
1695-6133
Resumo:
In August 2008, reactivation of the Little Salmon Lake landslide occurred. During this event, hundreds of conical mounds of variable size and composition formed in the deposition zone. The characteristics of these landforms are described and a potential mechanism for their formation is proposed. A preliminary slope stability analysis of the 2007 Mount Steele rock and ice avalanche was also undertaken. The orientation of very high persistence (>20 m long) structural planes (e.g., faults, joints and bedding) within bedrock in the source zone was obtained using an airborne-LiDAR digital elevation model and the software COLTOP-3D. Using these discontinuity orientation measurements, kinematic, surface wedge and simple three-dimensional distinct element slope stability analyses were performed.
Resumo:
The study investigates the possibility to incorporate fracture intensity and block geometry as spatially continuous parameters in GIS-based systems. For this purpose, a deterministic method has been implemented to estimate block size (Bloc3D) and joint frequency (COLTOP). In addition to measuring the block size, the Bloc3D Method provides a 3D representation of the shape of individual blocks. These two methods were applied using field measurements (joint set orientation and spacing) performed over a large field area, in the Swiss Alps. This area is characterized by a complex geology, a number of different rock masses and varying degrees of metamorphism. The spatial variability of the parameters was evaluated with regard to lithology and major faults. A model incorporating these measurements and observations into a GIS system to assess the risk associated with rock falls is proposed. The analysis concludes with a discussion on the feasibility of such an application in regularly and irregularly jointed rock masses, with persistent and impersistent discontinuities.