995 resultados para genetic gains


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long-term sustainable management of wild populations should be based on management actions that account for the genetic structure among populations. Knowledge of genetic structure and of the degree of demographic exchange between discreet [sic] populations allows managers to better define management units. However, adequate gene loci for population assessments are not always available. In this study, variable co-dominant DNA loci in the heavily exploited marine genus Brevoortia were developed with a microsatellite-enriched DNA library for the Gulf Menhaden (Brevoortia patronus). Microsatellite marker discovery was followed by genetic characterization of 4 endemic North American Brevoortia species, by using 14 novel loci as well as 5 previously described loci. Power analysis of these loci for use in species identification and genetic stock structure was used to assess their potential to improve the stock definition in the menhaden fishery of the Gulf of Mexico. These loci could be used to reliably identify menhaden species in the Gulf of Mexico with an estimated error rate of α=0.0001. Similarly, a power analysis completed on the basis of observed allele frequencies in Gulf Menhaden indicated that these markers can be used to detect very small levels of genetic divergence (Fst≈0.004) among simulated populations, with sample sizes as small as n=50 individuals. A cursory analysis of genetic structure among Gulf Menhaden sampled throughout the Gulf of Mexico indicated limited genetic structure among sampling locations, although the available sampling did not reach the target number (n=50) necessary to detect minimal values of significant structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Twenty-six stocks of Pacific salmon and trout (Oncorhynchus spp.), representing evolutionary significant units (ESU), are listed as threatened or endangered under the Endangered Species Act (ESA) and six more stocks are currently being evaluated for listing. The ecological and economic consequences of these listings are large; therefore considerable effort has been made to understand and respond to these declining populations. Until recently, Pacific harbor seals (Phoca vitulina richardsi) on the west coast increased an average of 5% to 7% per year as a result of the Marine Mammal Protection Act of 1972 (Brown and Kohlman2). Pacific salmon are seasonally important prey for harbor seals (Roffe and Mate, 1984; Olesiuk, 1993); therefore quantifying and understanding the interaction between these two protected species is important for Morphobiologically sound management strategies. Because some Pacific salmonid species in a given area may be threatened or endangered, while others are relatively abundant, it is important to distinguish the species of salmonid upon which the harbor seals are preying. This study takes the first step in understanding these interactions by using molecular genetic tools for species-level identification of salmonid skeletal remains recovered from Pacific harbor seal scats.