1000 resultados para gallery method


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The infrared spectra of the matrix isolated species of N-methylformamide (NMF) and N-methylacetamide (NMA) and their N-deuterated molecules have been simulated by the extended molecular mechanics method using an empirical force field which includes charges and charge fluxes as coulombic potential parameters. The structural parameters and dipole. moments of NMF and NMA have. also been computed in satisfactory agreement with the experiment. Good agreement between experimental and calculated vibrational frequencies and infrared absorption band intensities for NMF and NMA and their deuterated molecules has been obtained. The vibrational assignments of NMF and NMA are-discussed taking also into account the infrared absorption intensities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural transformation and ionic transport properties are investigated on wet-chemically synthesized La1-xMnO3 (X=0.0-0.18) compositions. Powders annealed in oxygen/air at 1000-1080 K exhibit cubic symmetry and transform to rhombohedral on annealing at 1173-1573 K in air/oxygen. Annealing above 1773 K in air or in argon/helium at 1473 K stabilized distorted rhombohedral or orthorhombic symmetry. Structural transformations are confirmed from XRD and TEM studies. The total conductivity of sintered disks, measured by four-probe technique, ranges from 5 S cm(-1) at 298 K to 105 S cm(-1) at 1273 K. The ionic conductivity measured by blocking electrode technique ranges from 1.0X10(-6) S cm(-1) at 700 K to 2.0X10(-3) S cm(-1) at 1273 K. The ionic transference number of these compositions ranges from 3.0X10(-5) to 5.0X10(-5) at 1273 K. The activation energy deduced from experimental data for ionic conduction and ionic migration is 1.03-1.10 and 0.80-1.00 eV, respectively. The activation energy of formation, association and migration of vacancies ranges from 1.07 to 1.44 eV. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal stencils are well known in electronics printing application such as for dispensing solder paste for surface mounting, printing embedded passive elements in multilayer structures, etc. For microprinting applications using stencils, the print quality depends on the smoothness of the stencil aperture and its dimensional accuracy, which in turn are invariably related to the method used to manufacture the stencils. In this paper, fabrication of metal stencils using a photo-defined electrically assisted etching method is described. Apertures in the stencil were made in neutral electrolyte using three different types of impressed current, namely, dc, pulsed dc, and periodic pulse reverse (PPR). Dimensional accuracy and wall smoothness of the etched apertures in each of the current waveforms were compared. Finally, paste transfer efficiency of the stencil obtained using PPR was calculated and compared with those of a laser-cut electropolished stencil. It is observed that the stencil fabricated using current in PPR waveform has better dimensional accuracy and aperture wall smoothness than those obtained with dc and pulsed dc. From the paste transfer efficiency experiment, it is concluded that photo-defined electrically assisted etching method can provide an alternate route for fabrication of metal stencils for future microelectronics printing applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Brittle-to-ductile-transition-temperature (BDTT) of free-standing Pt-aluminide (PtAl) coating specimens, i.e. stand-alone coating specimens without any substrate, was determined by micro-tensile testing technique. The effect of Pt content, expressed in terms of the thickness of initial electro-deposited Pt layer, on the BDTT of the coating has been evaluated and an empirical correlation drawn. Increase in the electrodeposited Pt layer thickness from nil to 10 mu m was found to cause an increase in the BDTT of the coating by about 100 degrees C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uncertainties in complex dynamic systems play an important role in the prediction of a dynamic response in the mid- and high-frequency ranges. For distributed parameter systems, parametric uncertainties can be represented by random fields leading to stochastic partial differential equations. Over the past two decades, the spectral stochastic finite-element method has been developed to discretize the random fields and solve such problems. On the other hand, for deterministic distributed parameter linear dynamic systems, the spectral finite-element method has been developed to efficiently solve the problem in the frequency domain. In spite of the fact that both approaches use spectral decomposition (one for the random fields and the other for the dynamic displacement fields), very little overlap between them has been reported in literature. In this paper, these two spectral techniques are unified with the aim that the unified approach would outperform any of the spectral methods considered on their own. An exponential autocorrelation function for the random fields, a frequency-dependent stochastic element stiffness, and mass matrices are derived for the axial and bending vibration of rods. Closed-form exact expressions are derived by using the Karhunen-Loève expansion. Numerical examples are given to illustrate the unified spectral approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In each stage of product development, we need to take decisions, by evaluating multiple product alternatives based on multiple criteria. Classical evaluation methods like weighted objectives method assumes certainty about information available during product development. However, designers often must evaluate under uncertainty. Often the likely performance, cost or environmental impacts of a product proposal could be estimated only with certain confidence, which may vary from one proposal to another. In such situations, the classical approaches to evaluation can give misleading results. There is a need for a method that can aid in decision making by supporting quantitative comparison of alternatives to identify the most promising alternative, under uncertain information about the alternatives. A method called confidence weighted objectives method is developed to compare the whole life cycle of product proposals using multiple evaluation criteria under various levels of uncertainty with non crisp values. It estimates the overall worth of proposal and confidence on the estimate, enabling deferment of decision making when decisions cannot be made using current information available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular diffusion plays a dominant role in transport of contaminants through fine-grained soils with low hydraulic conductivity. Attenuation processes occur while contaminants travel through the soils. Effective diffusion coefficient (De) is expected to take into consideration various attenuation processes. Effective diffusion coefficient has been considered to develop a general approach for modelling of contaminant transport in soils.The effective diffusion coefficient of sodium in presence of sulphate has been obtained using the column test.The reliability of De, has been checked by comparing theoretical breakthrough curves of sodium ion in soils obtained using advection diffusion equation with the experimental curve.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of geophysical methods have been proposed for near-surface site characterization and measurement of shear wave velocity by using a great variety of testing configurations, processing techniques,and inversion algorithms. In particular, two widely-used techniques are SASW (Spectral Analysis of SurfaceWaves) and MASW (Multichannel Analysis of SurfaceWaves). MASW is increasingly being applied to earthquake geotechnical engineering for the local site characterization, microzonation and site response studies.A MASW is a geophysical method, which generates a shear-wave velocity (Vs) profile (i.e., Vs versus depth)by analyzing Raleigh-type surface waves on a multichannel record. MASW system consisting of 24 channels Geode seismograph with 24 geophones of 4.5 Hz frequency have been used in this investigation. For the site characterization program, the MASW field experiments consisting of 58 one-dimensional shear wave velocity tests and 20 two-dimensional shear wave tests have been carried out. The survey points have been selected in such a way that the results supposedly represent the whole metropolitan Bangalore having an area of 220 km2.The average shear wave velocity of Bangalore soils have been evaluated for depths of 5m, 10m, 15m, 20m, 25m and 30 m. The subsoil site classification has been made for seismic local site effect evaluation based on average shear wave velocity of 30m depth (Vs30) of sites using National Earthquake Hazards Reduction Program (NEHRP) and International Building Code (IBC) classification. Soil average shearwave velocity estimated based on overburden thickness from the borehole information is also presented. Mapping clearly indicates that the depth of soil obtained from MASW is closely matching with the soil layers in bore logs. Among total 55 locations of MASW survey carried out, 34 locations were very close to the SPT borehole locations and these are used to generate correlation between Vs and corrected “N” values. The SPT field “N” values are corrected by applying the NEHRP recommended corrections.