930 resultados para fire cycle


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Version 1 of the Global Charcoal Database is now available for regional fire history reconstructions, data exploration, hypothesis testing, and evaluation of coupled climate–vegetation–fire model simulations. The charcoal database contains over 400 radiocarbon-dated records that document changes in charcoal abundance during the Late Quaternary. The aim of this public database is to stimulate cross-disciplinary research in fire sciences targeted at an increased understanding of the controls and impacts of natural and anthropogenic fire regimes on centennial-to-orbital timescales. We describe here the data standardization techniques for comparing multiple types of sedimentary charcoal records. Version 1 of the Global Charcoal Database has been used to characterize global and regional patterns in fire activity since the last glacial maximum. Recent studies using the charcoal database have explored the relation between climate and fire during periods of rapid climate change, including evidence of fire activity during the Younger Dryas Chronozone, and during the past two millennia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sedimentary charcoal records document changes in fire regime. We have identified 67 sites (30 sites with better than millennial resolution) which have records for some part of the Last Glacial to analyse changes in global fire regimes. Fire was consistently lower during the glacial than during the Eemian and Holocene. Within the glacial, Marine Isotope Stage (MIS) 3 is characterised globally by more fire than MIS 2. The signal for MIS 4 is less clear: there is more fire in the Northern Hemisphere and less fire in the Southern Hemisphere than during MIS 2 and 3. The records, most particularly records from the northern extratropics, show millennial-scale variability in fire regimes corresponding to the rapid climate changes associated with Dansgaard–Oeschger (D-O) cycles. Most of the D-O cycles during the Last Glacial and all of the Heinrich stadials are apparent in the composite global record of fire regime: fire increases during D-O warming events and decreases during intervals of rapid cooling. Our analyses show that fire regimes show a lagged response to rapid climate changes of ca 100–200 years in the case of D-O warming events, ca 0–100 years in the case of D-O cooling events and ca 200 years in the case of Heinrich Stadials. The Strong climatic variability experienced during the glacial resulted in important changes in fire regimes even though the base level of biomass burning was less than today.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fire is an important component of the Earth System that is tightly coupled with climate, vegetation, biogeochemical cycles, and human activities. Observations of how fire regimes change on seasonal to millennial timescales are providing an improved understanding of the hierarchy of controls on fire regimes. Climate is the principal control on fire regimes, although human activities have had an increasing influence on the distribution and incidence of fire in recent centuries. Understanding of the controls and variability of fire also underpins the development of models, both conceptual and numerical, that allow us to predict how future climate and land-use changes might influence fire regimes. Although fires in fire-adapted ecosystems can be important for biodiversity and ecosystem function, positive effects are being increasingly outweighed by losses of ecosystem services. As humans encroach further into the natural habitat of fire, social and economic costs are also escalating. The prospect of near-term rapid and large climate changes, and the escalating costs of large wildfires, necessitates a radical re-thinking and the development of approaches to fire management that promote the more harmonious co-existence of fire and people.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dipolar streamers are coronal structures formed by open solar flux converging from coronal holes of opposite polarity. Thus the dipolar streamer belt traces the coronal foot print of the heliospheric current sheet (HCS), and it is strongly associated with the origin of slow solar wind. Pseudostreamers, on the other hand, separate converging regions of open solar flux from coronal holes of the same polarity and do not contain current sheets. They have recently received a great deal of interest as a possible additional source of slow solar wind. Here we add to that growing body of work by using the potential-field source-surface model to determine the occurrence and location of dipolar and pseudostreamers over the last three solar cycles. In addition to providing new information about pseudostreamer morphology, the results help explain why the observations taken during the first Ulysses perihelion pass in 1995 showed noncoincidence between dipolar streamer belt and the locus of slowest flow. We find that Carrington rotation averages of the heliographic latitudes of dipolar and pseudostreamer belts are systematically shifted away from the equator, alternately in opposite directions, with a weak solar cycle periodicity, thus keeping slow wind from the web of combined streamer belts approximately symmetric about the equator. The largest separation of dipolar and pseudostreamer belts occurred close to the Ulysses pass, allowing a unique opportunity to see that slow wind from pseudostreamer belts north of the southward-displaced dipolar belt was responsible for the noncoincident pattern.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known that atmospheric concentrations of carbon dioxide (CO2) (and other greenhouse gases) have increased markedly as a result of human activity since the industrial revolution. It is perhaps less appreciated that natural and managed soils are an important source and sink for atmospheric CO2 and that, primarily as a result of the activities of soil microorganisms, there is a soil-derived respiratory flux of CO2 to the atmosphere that overshadows by tenfold the annual CO2 flux from fossil fuel emissions. Therefore small changes in the soil carbon cycle could have large impacts on atmospheric CO2 concentrations. Here we discuss the role of soil microbes in the global carbon cycle and review the main methods that have been used to identify the microorganisms responsible for the processing of plant photosynthetic carbon inputs to soil. We discuss whether application of these techniques can provide the information required to underpin the management of agro-ecosystems for carbon sequestration and increased agricultural sustainability. We conclude that, although crucial in enabling the identification of plant-derived carbon-utilising microbes, current technologies lack the high-throughput ability to quantitatively apportion carbon use by phylogentic groups and its use efficiency and destination within the microbial metabolome. It is this information that is required to inform rational manipulation of the plant–soil system to favour organisms or physiologies most important for promoting soil carbon storage in agricultural soil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Svalgaard (2014) has recently pointed out that the calibration of the Helsinki magnetic observatory’s H component variometer was probably in error in published data for the years 1866–1874.5 and that this makes the interdiurnal variation index based on daily means, IDV(1d), (Lockwood et al., 2013a), and the interplanetary magnetic field strength derived from it (Lockwood et al., 2013b), too low around the peak of solar cycle 11. We use data from the modern Nurmijarvi station, relatively close to the site of the original Helsinki Observatory, to confirm a 30% underestimation in this interval and hence our results are fully consistent with the correction derived by Svalgaard. We show that the best method for recalibration uses the Helsinki Ak(H) and aa indices and is accurate to ±10 %. This makes it preferable to recalibration using either the sunspot number or the diurnal range of geomagnetic activity which we find to be accurate to ±20 %. In the case of Helsinki data during cycle 11, the two recalibration methods produce very similar corrections which are here confirmed using newly digitised data from the nearby St Petersburg observatory and also using declination data from Helsinki. However, we show that the IDV index is, compared to later years, too similar to sunspot number before 1872, revealing independence of the two data series has been lost; either because the geomagnetic data used to compile IDV has been corrected using sunspot numbers, or vice versa, or both. We present corrected data sequences for both the IDV(1d) index and the reconstructed IMF (interplanetary magnetic field).We also analyse the relationship between the derived near-Earth IMF and the sunspot number and point out the relevance of the prior history of solar activity, in addition to the contemporaneous value, to estimating any “floor” value of the near-Earth interplanetary field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 19 cal ka BP pollen and charcoal record from Lake Shaman (44°S; 71°W, Chile) was analyzed to establish vegetation, fire and climate dynamics of the forest-steppe ecotone in Central Chilean Patagonia. Lake Shaman record indicates that the upper Río Cisnes valley was free of ice at around 19 cal ka BP. From this date and until 14.8 cal ka BP, a grass steppe with high proportions of shrubs associated to colder and drier conditions than present developed in this area. A continuous increase of Nothofagus accompanied by a decline in the steppe shrubs and sudden dominance of paludal over aquatic plants from 11 cal ka BP was associated to effective moisture increase but still under modern values. The replacement of the cold-dry grass-shrub steppe by a similar-than-present forest-steppe ecotone suggests an increase in temperature indicating the onset of the Holocene. At the same time, moderate fire activity suggested by the charcoal record could be related to major fuel availability as consequence of Nothofagus forest expansion. Between 8 and 3 cal ka BP, the record indicates the easternmost position of the forest-steppe ecotone suggesting the highest effective moisture with the establishment of seasonality between 5 and 3 cal ka BP. From 3 cal ka BP, the record indicates a retraction of the forest-steppe ecotone accompanied by a high pollen record variability and an increased fire activity. These late changes suggest decreased effective moisture associated with a high climatic variability. At regional and extra-regional scale, climatic changes at Lake Shaman's record are mostly associated to changes (latitudinal shifts and/or strengthening/weakening) of past Southern Westerlies that were previously recorded along Patagonia from the Lateglacial to the mid-Holocene. During the Late Holocene, a regional pattern characterized by high record variability emerges throughout Central Chilean Patagonia. This variability would be related to (1) low magnitude Southern Westerlies changes probably associated to ENSO and/or SAM or (2) the complex relationships between vegetation, fire and human occupations during the last 3 cal ka.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite widespread belief that moods are affected by the menstrual cycle, researchers on emotion and reward have not paid much attention to the menstrual cycle until recently. However, recent research has revealed different reactions to emotional stimuli and to rewarding stimuli across the different phases of the menstrual cycle. The current paper reviews the emerging literature on how ovarian hormone fluctuation during the menstrual cycle modulates reactions to emotional stimuli and to reward. Behavioral and neuroimaging studies in humans suggest that estrogen and progesterone have opposing influences. That is, it appears that estrogen enhances reactions to reward, but progesterone counters the facilitative effects of estrogen and decreases reactions to rewards. In contrast, reactions to emotionally arousing stimuli (particularly negative stimuli) appear to be decreased by estrogen but enhanced by progesterone. Potential factors that can modulate the effects of the ovarian hormones (e.g., an inverse quadratic function of hormones’ effects; the structural changes of the hippocampus across the menstrual cycle) are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The convectively active part of the Madden-Julian Oscillation (MJO) propagates eastward through the warm pool, from the Indian Ocean through the Maritime Continent (the Indonesian archipelago) to the western Pacific. The Maritime Continent's complex topography means the exact nature of the MJO propagation through this region is unclear. Model simulations of the MJO are often poor over the region, leading to local errors in latent heat release and global errors in medium-range weather prediction and climate simulation. Using 14 northern winters of TRMM satellite data it is shown that, where the mean diurnal cycle of precipitation is strong, 80% of the MJO precipitation signal in the Maritime Continent is accounted for by changes in the amplitude of the diurnal cycle. Additionally, the relationship between outgoing long-wave radiation (OLR) and precipitation is weakened here, such that OLR is no longer a reliable proxy for precipitation. The canonical view of the MJO as the smooth eastward propagation of a large-scale precipitation envelope also breaks down over the islands of the Maritime Continent. Instead, a vanguard of precipitation (anomalies of 2.5 mm day^-1 over 10^6 km^2) jumps ahead of the main body by approximately 6 days or 2000 km. Hence, there can be enhanced precipitation over Sumatra, Borneo or New Guinea when the large-scale MJO envelope over the surrounding ocean is one of suppressed precipitation. This behaviour can be accommodated into existing MJO theories. Frictional and topographic moisture convergence and relatively clear skies ahead of the main convective envelope combine with the low thermal inertia of the islands, to allow a rapid response in the diurnal cycle which rectifies onto the lower-frequency MJO. Hence, accurate representations of the diurnal cycle and its scale interaction appear to be necessary for models to simulate the MJO successfully.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Maritime Continent archipelago, situated on the equator at 95-165E, has the strongest land-based precipitation on Earth. The latent heat release associated with the rainfall affects the atmospheric circulation throughout the tropics and into the extra-tropics. The greatest source of variability in precipitation is the diurnal cycle. The archipelago is within the convective region of the Madden-Julian Oscillation (MJO), which provides the greatest variability on intra-seasonal time scales: large-scale (∼10^7 km^2) active and suppressed convective envelopes propagate slowly (∼5 m s^-1) eastwards between the Indian and Pacific Oceans. High-resolution satellite data show that a strong diurnal cycle is triggered to the east of the advancing MJO envelope, leading the active MJO by one-eighth of an MJO cycle (∼6 days). Where the diurnal cycle is strong its modulation accounts for 81% of the variability in MJO precipitation. Over land this determines the structure of the diagnosed MJO. This is consistent with the equatorial wave dynamics in existing theories of MJO propagation. The MJO also affects the speed of gravity waves propagating offshore from the Maritime Continent islands. This is largely consistent with changes in static stability during the MJO cycle. The MJO and its interaction with the diurnal cycle are investigated in HiGEM, a high-resolution coupled model. Unlike many models, HiGEM represents the MJO well with eastward-propagating variability on intra-seasonal time scales at the correct zonal wavenumber, although the inter-tropical convergence zone's precipitation peaks strongly at the wrong time, interrupting the MJO's spatial structure. However, the modelled diurnal cycle is too weak and its phase is too early over land. The modulation of the diurnal amplitude by the MJO is also too weak and accounts for only 51% of the variability in MJO precipitation. Implications for forecasting and possible causes of the model errors are discussed, and further modelling studies are proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies documented that a distinct southward shift of central-Pacific low-level wind anomalies occurring during the ENSO decaying phase, is caused by an interaction between the Western Pacific annual cycle and El Niño-Southern Oscillation (ENSO) variability. The present study finds that the meridional movement of the central-Pacific wind anomalies appears only during traditional Eastern-Pacific (or EP) El Niño events rather than in Central-Pacific (CP) El Niño events in which sea surface temperature (SST) anomalies are confined to the central Pacific. The zonal structure of ENSO-related SST anomalies therefore has an important effect on meridional asymmetry in the associated atmospheric response and its modulation by the annual cycle. In contrast to EP El Niño events, the SST anomalies of CP El Niño events extend further west towards to the warm pool region with its climatological warm SSTs. In the warm pool region, relatively small SST anomalies thus are able to excite convection anomalies on both sides of the equator, even with a meridionally asymmetric SST background state. Therefore, almost meridionally symmetric precipitation and wind anomalies are observed over the central Pacific during the decaying phase of CP El Niño events. The SST anomaly pattern of La Niña events is similar to CP El Niño events with a reversed sign. Accordingly, no distinct southward displacement of the atmospheric response occurs over the central Pacific during the La Niña decaying phase. These results have important implications for ENSO climate impacts over East Asia, since the anomalous low-level anticyclone over the western North Pacific is an integral part of the annual cycle-modulated ENSO response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding observed changes to the global water cycle is key to predicting future climate changes and their impacts. While many datasets document crucial variables such as precipitation, ocean salinity, runoff, and humidity, most are uncertain for determining long-term changes. In situ networks provide long time-series over land but are sparse in many regions, particularly the tropics. Satellite and reanalysis datasets provide global coverage, but their long-term stability is lacking. However, comparisons of changes among related variables can give insights into the robustness of observed changes. For example, ocean salinity, interpreted with an understanding of ocean processes, can help cross-validate precipitation. Observational evidence for human influences on the water cycle is emerging, but uncertainties resulting from internal variability and observational errors are too large to determine whether the observed and simulated changes are consistent. Improvements to the in situ and satellite observing networks that monitor the changing water cycle are required, yet continued data coverage is threatened by funding reductions. Uncertainty both in the role of anthropogenic aerosols, and due to large climate variability presently limits confidence in attribution of observed changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper the origin and evolution of the Sun’s open magnetic flux is considered by conducting magnetic flux transport simulations over many solar cycles. The simulations include the effects of differential rotation, meridional flow and supergranular diffusion on the radial magnetic field at the surface of the Sun as new magnetic bipoles emerge and are transported poleward. In each cycle the emergence of roughly 2100 bipoles is considered. The net open flux produced by the surface distribution is calculated by constructing potential coronal fields with a source surface from the surface distribution at regular intervals. In the simulations the net open magnetic flux closely follows the total dipole component at the source surface and evolves independently from the surface flux. The behaviour of the open flux is highly dependent on meridional flow and many observed features are reproduced by the model. However, when meridional flow is present at observed values the maximum value of the open flux occurs at cycle minimum when the polar caps it helps produce are the strongest. This is inconsistent with observations by Lockwood, Stamper and Wild (1999) and Wang, Sheeley, and Lean (2000) who find the open flux peaking 1–2 years after cycle maximum. Only in unrealistic simulations where meridional flow is much smaller than diffusion does a maximum in open flux consistent with observations occur. It is therefore deduced that there is no realistic parameter range of the flux transport variables that can produce the correct magnitude variation in open flux under the present approximations. As a result the present standard model does not contain the correct physics to describe the evolution of the Sun’s open magnetic flux over an entire solar cycle. Future possible improvements in modeling are suggested.