860 resultados para ethylene-propylene terpolymer (EPDM)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Actiaomycin-D (actD) binds to natural DNA at two different classes of binding sites, weak and strong. The affinity for these sites is highly dependent on DNA se(sequence and solution conditions, and the interaction appears to be purely entropic driven Although the entropic character of this reaction has been attributed to the release of water molecules upon drug to DNA complex formation, the mechanism by which hydration regulates actD binding and discrimination between different classes of binding sites on natural DNA is still unknown. In this work, we investigate the role of hydration on this reaction using the osmotic stress method. We skew that the decrease of solution water activity, due to the addition of sucrose, glycerol ethylene glycol, and betaine, favors drug binding to the strong binding sites on DNA by increasing both the apparent binding affinity Delta G, and the number of DNA base pairs apparently occupied by the bound drug n(bp/actD). These binding parameters vary linearly with the logarithm of the molar fraction of water in solution log(X-w), which indicates the contribution of water binding to the energetic of the reaction. It is demonstrated that the hydration change measured upon binding increases proportionally to the apparent size of the binding site n(bp/uctD). This indicates that n(bp/actD) measured from the Scatchard plod is a measure of the size of the DNA molecule changing conformation due to ligand binding. We also find that the contribution of DNA deformation, gauged by n(bp/act) to the total free energy of binding Delta G, is given by Delta G = Delta G(local) + n(bp/actD) x delta G(DNA), where Delta G(local), = -8020 +/- 51 cal/mol of actD bound and delta G(DNa) = -24.1 +/- 1.7cal/mol of base pair at 25 degrees C. We interpret Delta G(local), as the energetic contribution due to the direct interactions of actD with the actual tetranucleotide binding site, and it n(bp/actB) X delta G(DNA) as that due to change inconformation, induced by binding, of it n(bp/actD) DNA base pairs flanking the local site. This interpretation is supported by the agreement found between the value of delta G(DNA) and the torsional free energy change measured independently. We conclude suggesting an allosteric model for ligand binding to DNA, such that the increase in binding affinity is achieved by increasing the relaxation of the unfavorable free energy of binding storage at the local site through a larger number of DNA base pairs. The new aspect on this model is that the size of the complex is not fixed but determined by solutions conditions, such as water activity, which modulate the energetic barrier to change helix conformation. These results may suggest that long-range allosteric transitions of duplex DNA are involved in the inhibition of RNA synthesis by actD, and more generally, in the regulation of transcription. (C) 2000 John Wiley & Sons, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to evaluate the effects of equine chorionic gonadotropin (eCG) treatment on the number of induced accessory corpora lutea (CL), plasma progesterone concentrations and pregnancy rate in cross-bred heifers after transfer of frozen-thawed (1.5 M ethylene glycol) embryos. All recipients received 500 mug PGF2alpha (dl-cloprostenol, i.m.) at random stages of the estrous cycle (Day 0) and were observed for estrus for 7 days. on Day 14, heifers detected in estrus between 2 and 7 days after PGF2alpha treatment were randomly allocated to four groups (n = 83 per group) and given 0 (control), 200, 400, or 600 IU of eCG. Two days later (Day 16), these recipients were given PGF2a and observed for estrus. Six to eight days after detection of estrus, plasma samples were collected to determine progesterone concentration and ultrasonography was performed to observe ovarian structures. Heifers with multiple CL or a single CL >15 mm in diameter received an embryo by direct transfer. Embryos of excellent and good quality were thawed and transferred to the recipients by the same veterinarian. Pregnancy was diagnosed by ultrasonography and confirmed by transrectal palpation 21 and 83 days after embryo transfer (ET), respectively. Plasma progesterone concentrations on the day of transfer (Day 7 of the estrous cycle) were 3.9 +/- 0.7, 4.2 +/- 0.4, 6.0 +/- 0.4, and 7.8 +/- 0.6 ng/ml for groups Control, 200, 400, and 600, respectively (Control versus treated groups P = 0.009; 200 versus 400 and 600 groups P = 0.0001; and 400 versus 600 P = 0.012). Conception rates 83 days after ET were 41.9, 50.0, 25.0, and 20.9% for groups Control, 200, 400, and 600, respectively (200 versus 400 and 600 groups P = 0.0036). In conclusion, an increase in progesterone concentration, induced by eCG treatment, did not improve pregnancy rates in ET recipients. Conversely, there was a decline in conception rates in the animals with the highest plasma progesterone concentrations. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SnO2-based materials are used as sensors, catalysts and in electro-optical devices. This work aims to synthesize and characterize the SnO2/Sb2O3-based inorganic pigments, obtained by the polymeric precursor method, also known as Pechini method (based on the metallic citrate polymerization by means of ethylene glycol). The precursors were characterized by thermogravimetry (TG) and differential thermal analysis (DTA). After characterization, the precursors were heat-treated at different temperatures and characterized by X-ray diffraction. According to the TG/DTA curves basically two-step mass loss process was observed: the first one is related to the dehydration of the system; and the second one is representative to the combustion of the organic matter. Increase of the heat treatment temperature from 500 to 600 degrees C and 700 degrees C resulted higher crystallinity of the formed product.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple, cheap and versatile, polyol-mediated fabrication method has been extended to the synthesis of tin oxide nanoparticles on a large scale. Ultrafine SnO2 nanoparticles with crystallite sizes of less than 5 nm were realized by refluxing SnCl2 . 2H(2)O in ethylene glycol at 195 degrees C for 4 h under vigorous stirring in air. The as-prepared SnO2 nanoparticles exhibited enhanced Li-ion storage capability and cyclability, demonstrating a specific capacity of 400 mAh g(-1) beyond 100 cycles. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)