929 resultados para enzymatic biosensor


Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is discovered that SBA-15 (santa barbara amorphous) can provide the favorable microenvironments and optimal direct electron-transfer tunnels (DETT) of immobilizing cytochrome c (Cyt c) by the preferred orientation on it. A high-redox potential (254 mV vs. Ag/AgCl) was obtained on glassy carbon (GC) electrode modified by immobilizing Cyt c on rod-like SBA-15. With ultraviolet-visible (UV-vis), circular dichroism (CD), FTIR and cyclic voltammetry, it was demonstrated that immobilization made Cyt c exhibits stable and ideal electrochemical characteristics while the biological activity of immobilized Cyt c is retained as usual.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It was found that silicon dioxide (SiO2) nanoparticles modified onto glassy carbon (GC) electrode exhibited a dramatic promotion on the direct electron transfer of Cytochrome c (Cyt c). The corresponding mechanism was discussed based on the electrochemical characteristics and a spatial geometrical model of the bifunctional structure. The model could offer insight to the study of biosensors and bioreactors without chemical mediator and serve as a basis for their fabrication. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heterogeneous electrocatalytic reduction of hydrogen peroxide (H2O2) by C-60 is reported for the first time. C-60 is embedded in tetra octyl ammonium bromide (TOAB) film and is characterized by scanning electron microscopy and cyclic voltammetry. Electrocatalytic studies show that the trianion of C-60 mediates the electrocatalytic reduction of H2O2 in aqueous solution containing 0.1 M KCl. Application of such film modified electrode as an amperometric sensor for H2O2 determination is also examined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here, we report a simple and Sensitive colorimetric detection method for Hg2+ ions With a tunable detection range based on DNA oligonucleotides and unmodified gold nanoparticles (DNA/AuNPs) sensing system. Complementary DNA strands with T-T mismatches could effectively protect AuNPs from salt-induced aggregation. While in the presence of Hg2+ ions T-Hg2+-T coordination chemistry leads to the formation of DNA duplexes, and AuNPs are less well protected thus aggregate at the same salt concentration, accompanying by color change from red to blue. By rationally varying the number of T-T mismatches in DNA oligonucleotides, the detection range could be tuned.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel Ruthenium(II) tris(bipyridine)-based solid-state electrochemiluminescence (ECL) sensor was developed in this paper. The sensor was fabricated by immobilising tris(2,2'-bipyridyl) ruthenium(II) (Ru(bpy)(3)(2+)) in sulfonic-functionalised porous titania (TiO2-SO3H) nanoparticles via an ion exchange strategy, followed by employing environment friendly and stable biopolymer chitosan (CHIT) to entrap Ru(bpy)(3)(2+)/TiO2-SO3H onto the ITO electrode.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A label-free and highly sensitive impedimetric aptasensor based on a polyamidoamine dendrimer modified gold electrode was developed for the determination of thrombin. Amino-terminated polyamidoamine dendrimer was firstly covalently attached to the cysteine functionalized gold electrode through glutaraldehyde coupling. Subsequently, the dendrimer was activated with glutaraldehyde, and amino-modified thrombin aptamer probe was immobilized onto the activated dendrimer monolayer film. The layer-by-layer assembly process was traced by surface plasmon resonance and electrochemical impedance spectroscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, the fabrication of an efficient amperometric hydrogen peroxide sensor with favorable properties is presented. Prussian blue (PB) was catalytically synthesized by Pt nanoparticles (Pt-nano) from ferric ferricyanide aqueous solution to form PB@Pt-nano hybrid, and it was confirmed by transmission electron microscope (TEM) and optical spectra. The electrochemical behavior of PB@Pt-nano was highly improved through its integration with poly(diallyldimethylammonium chloride) modified carbon nanotubes (PCNTs).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, platinum nanoparticles modified with Prussian blue (PB) have been synthesized by a heterogeneous catalytic reaction. Transmission electronic microscopy (TEM) confirmed the deposition of nanoclusters around the Surfaces of platinum particles, and spectroscopic studies verified that the molecular composition of the nanoclusters was dominantly PB and a minority of platinum ferricyanide. Thus, it was shown that the platinum particles behaved not only as catalysts for the growth of PB, but also as a reactant to generate a PB analogue complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hollow deoxyribonucleic acid (DNA)/poly-L-lysine (PLL) capsules were successfully fabricated through a layer-by-layer (LbL) self-assembly of DNA and PLL on porous CaCO3 microparticles, followed by removal of templates with ethylenediamine tetraacetic acid disodium salt (EDTA). The enzymatic degradation of the capsules in the presence of alpha-chymotrypsin was explored. The higher the enzyme concentration, the higher is the degradation rate of hollow capsules. in addition, glutaric dialdehyde (GA) cross-linking was found to be another way to manipulate degradation rate of hollow capsules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, it was found that glucose oxidase (GOD) has been stably immobilized on glassy carbon electrode modified with mesoporous carbon FDU-15 (MC-FDU-15) and Nafion by simple technique. The sorption behavior of GOD immobilized on MC-FDU-15 matrix was characterized by transmission electron microscopy (TEM), ultraviolet-visible (UV-vis), FTIR, respectively, which demonstrated that MC-FDU-15 could facilitate the electron exchange between the active center of GOD and electrode. The direct electrochemistry and electrocatalysis behavior of GOD on the modified electrode were characterized by cyclic voltammogram (CV) which indicated that GOD immobilized on Nafion and MC-FDU-15 matrices display direct, reversible and surface-controlled redox reaction with an enhanced electron transfer rate constant of 4.095 s(-1) in 0.1 M phosphate buffer solution (PBS) (pH 7.12).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Graphene sheets functionalized covalently with biocompatible poly-L-lysine (PLL) were first synthesized in all alkaline solution. PLL-functionalized graphene is water-soluble and biocompatible, which makes it a novel material promising for biological applications. Graphene sheets played an important role as connectors to assemble these active amino groups Of Poly-L-lysine, which provided a very biocompatible. environment for further functionalization, such as attaching bioactive molecules. As an example, an amplified biosensor toward H2O2 based on linking peroxidase onto PLL-functionalized graphene was investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multiwalled carbon nanotubes@SnO2-Au (MWCNTs@SnO2-Au) composite was synthesized by a chemical route. The structure and composition of the MWCNTs@SnO2-Au composite were confirmed by means of transmission electron microscopy, X-ray photoelectron and Raman spectroscopy. Due to the good electrocatalytic property of MWCNTs@SnO2-Au composite, a glucose biosensor was constructed by absorbing glucose oxidase (GOD) on the hybrid material. A direct electron transfer process is observed at the MWCNTs@SnO2-Au/GOD-modified glassy carbon electrode. The glucose biosensor has a linear range from 4.0 to 24.0 mM, which is suitable for glucose determination by real samples. It should be worthwhile noting that, from 4.0 to 12.0 mM, the cathodic peak currents of the biosensor decrease linearly with increasing the glucose concentrations in human blood. Meanwhile, the resulting biosensor can also prevent the effects of interfering species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We first reported that polyvinylpyrrolidone-protected graphene was dispersed well in water and had good electrochemical reduction toward O-2 and H2O2. With glucose oxidase (GOD) as an enzyme model, we constructed a novel polyvinylpyrrolidone-proteeted graphene/polyethylenimine-ftmctionalized ionic liquid/GOD electrochemical biosensor, which achieved the direct electron transfer of GOD, maintained its bioactivity and showed potential application for the fabrication of novel glucose biosensors with linear glucose response up to 14 mM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inorganic nanoparticles (NPs) with attractive electronic, optical, magnetic, thermal and catalytic properties have attracted great interest due to their important applications in physics, chemistry, biology, medicine, materials science and interdisciplinary fields. Biomolecule-NP hybrid systems, which combine recognition and catalytic properties of biomolecules with electronic, optical, magnetic and catalytic properties of NPs, are particularly new materials with synergistic properties originating from the components of the hybrid composites. The biomolecule-NP hybrid system has excellent prospects for interfacing biological recognition events with electronic signal transduction so as to design a new generation of bioelectronic devices with high sensitivity.