954 resultados para energy gain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a method to compute a probably approximately correct (PAC) normalized histogram of observations with a refresh rate of Theta(1) time units per histogram sample on a random geometric graph with noise-free links. The delay in computation is Theta(root n) time units. We further extend our approach to a network with noisy links. While the refresh rate remains Theta(1) time units per sample, the delay increases to Theta(root n log n). The number of transmissions in both cases is Theta(n) per histogram sample. The achieved Theta(1) refresh rate for PAC histogram computation is a significant improvement over the refresh rate of Theta(1/log n) for histogram computation in noiseless networks. We achieve this by operating in the supercritical thermodynamic regime where large pathways for communication build up, but the network may have more than one component. The largest component however will have an arbitrarily large fraction of nodes in order to enable approximate computation of the histogram to the desired level of accuracy. Operation in the supercritical thermodynamic regime also reduces energy consumption. A key step in the proof of our achievability result is the construction of a connected component having bounded degree and any desired fraction of nodes. This construction may also prove useful in other communication settings on the random geometric graph.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the recent years. India has emerged as one of the fast growing economies of the world necessitating equally rapid increase in modern energy consumption. With an imminent global climate change threat, India will have difficulties in continuing with this rising energy use levels towards achieving high economic growth. It will have to follow an energy-efficient pathway in attaining this goal. In this context, an attempt is made to present India's achievements on the energy efficiency front by tracing the evolution of policies and their impacts. The results indicate that India has made substantial progress in improving energy efficiency which is evident from the reductions achieved in energy intensities of GDP to the tune of 88% during 1980-2007. Similar reductions have been observed both with respect to overall Indian economy and the major sectors of the economy. In terms of energy intensity of GDP, India occupies a relatively high position of nine among the top 30 energy consuming countries of the world. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An asymmetric binary search switching technique for a successive approximation register (SAR) ADC is presented, and trade-off between switching energy and conversion cycles is discussed. Without using any additional switches, the proposed technique consumes 46% less switching energy, for a small input swing (0.5 V-ref (P-P)), as compared to the last reported efficient switching technique in literature for an 8-bit SAR ADC. For a full input swing (2 V-ref (P-P)), the proposed technique consumes 16.5% less switching energy.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Head-on infall of two compact objects with arbitrary mass ratio is investigated using the multipolar post-Minkowskian approximation method. At the third post-Newtonian order the energy flux, in addition to the instantaneous contributions, also includes hereditary contributions consisting of the gravitational-wave tails, tails-of-tails, and the tail-squared terms. The results are given both for infall from infinity and also for infall from a finite distance. These analytical expressions should be useful for the comparison with the high accuracy numerical relativity results within the limit in which post-Newtonian approximations are valid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of energy harvesting (EH) nodes as cooperative relays is a promising and emerging solution in wireless systems such as wireless sensor networks. It harnesses the spatial diversity of a multi-relay network and addresses the vexing problem of a relay's batteries getting drained in forwarding information to the destination. We consider a cooperative system in which EH nodes volunteer to serve as amplify-and-forward relays whenever they have sufficient energy for transmission. For a general class of stationary and ergodic EH processes, we introduce the notion of energy constrained and energy unconstrained relays and analytically characterize the symbol error rate of the system. Further insight is gained by an asymptotic analysis that considers the cases where the signal-to-noise-ratio or the number of relays is large. Our analysis quantifies how the energy usage at an EH relay and, consequently, its availability for relaying, depends not only on the relay's energy harvesting process, but also on its transmit power setting and the other relays in the system. The optimal static transmit power setting at the EH relays is also determined. Altogether, our results demonstrate how a system that uses EH relays differs in significant ways from one that uses conventional cooperative relays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The three dimensional structure of a protein is formed and maintained by the noncovalent interactions among the amino acid residues of the polypeptide chain These interactions can be represented collectively in the form of a network So far such networks have been investigated by considering the connections based on distances between the amino acid residues Here we present a method of constructing the structure network based on interaction energies among the amino acid residues in the protein We have investigated the properties of such protein energy based networks (PENs) and have shown correlations to protein structural features such as the clusters of residues involved in stability formation of secondary and super secondary structural units Further we demonstrate that the analysis of PENs in terms of parameters such as hubs and shortest paths can provide a variety of biologically important information such as the residues crucial for stabilizing the folded units and the paths of communication between distal residues in the protein Finally the energy regimes for different levels of stabilization in the protein structure have clearly emerged from the PEN analysis

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermonuclear fusion is a sustainable energy solution, in which energy is produced using similar processes as in the sun. In this technology hydrogen isotopes are fused to gain energy and consequently to produce electricity. In a fusion reactor hydrogen isotopes are confined by magnetic fields as ionized gas, the plasma. Since the core plasma is millions of degrees hot, there are special needs for the plasma-facing materials. Moreover, in the plasma the fusion of hydrogen isotopes leads to the production of high energetic neutrons which sets demanding abilities for the structural materials of the reactor. This thesis investigates the irradiation response of materials to be used in future fusion reactors. Interactions of the plasma with the reactor wall leads to the removal of surface atoms, migration of them, and formation of co-deposited layers such as tungsten carbide. Sputtering of tungsten carbide and deuterium trapping in tungsten carbide was investigated in this thesis. As the second topic the primary interaction of the neutrons in the structural material steel was examined. As model materials for steel iron chromium and iron nickel were used. This study was performed theoretically by the means of computer simulations on the atomic level. In contrast to previous studies in the field, in which simulations were limited to pure elements, in this work more complex materials were used, i.e. they were multi-elemental including two or more atom species. The results of this thesis are in the microscale. One of the results is a catalogue of atom species, which were removed from tungsten carbide by the plasma. Another result is e.g. the atomic distributions of defects in iron chromium caused by the energetic neutrons. These microscopic results are used in data bases for multiscale modelling of fusion reactor materials, which has the aim to explain the macroscopic degradation in the materials. This thesis is therefore a relevant contribution to investigate the connection of microscopic and macroscopic radiation effects, which is one objective in fusion reactor materials research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study evaluates the feasibility of undelimbed Scots pine (Pinus sylvestris L.) for integrated production of pulp and energy in a kraft pulp mill from the technical, economic and environmental points of view, focusing on the potential of bundle harvesting. The feasibility of tree sections for pulp production was tested by conducting an industrial wood-handling experiment, laboratory cooking and bleaching trials, using conventional small-diameter Scots pine pulpwood as a reference. These trials showed that undelimbed Scots pine sections can be processed in favourable conditions as a blend with conventional small-diameter pulpwood without reducing the pulp quality. However, fibre losses at various phases of the process may increase when using undelimbed material. In the economic evaluation, both pulp production and wood procurement costs were considered, using the relative wood paying capability of a kraft pulp mill as a determinant. The calculations were made for three Scots pine first-thinning stands with the breast-height diameter of the removal (6 12 cm) as the main distinctive factor. The supply chains included in the comparison were based on cut-to-length harvesting, whole-tree harvesting and bundle harvesting (whole-tree bundling). With the current ratio of pulp and energy prices, the wood paying capability declines with an increase in the proportion of the energy fraction of the raw material. The supply system based on the cut-to-length method was the most efficient option, resulting in the highest residual value at stump in most cases. A decline in the pulp price and an increase in the energy price improved the competitiveness of the whole-tree systems. With short truck transportation distances and low pulp prices, however, the harvesting of loose whole trees can result in higher residual value at stump in small-diameter stands. While savings in transportation costs did not compensate for the high cutting and compaction costs by the second prototype of the bundle harvester, an increase in transportation distances improved its competitiveness. Since harvesting undelimbed assortments increases nutrient export from the site, which can affect soil productivity, the whole-tree alternatives included in the present study cannot be recommended on infertile peatlands and mineral soils. The harvesting of loose whole trees or bundled whole trees implies a reduction in protective logging residues and an increase in site traffic or payloads. These factors increase the risk of soil damage, especially on peat soils with poor bearing capacity. Within the wood procurement parameters which were examined, the CO2 emissions of the supply systems varied from 13 27 kg m3. Compaction of whole trees into bundles reduced emissions from transportation by 30 39%, but these reductions were insufficient to compensate for the increased emissions from cutting and compaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Langevin dynamics simulation studies have been employed to calculate the temperature dependent free energy surface and folding characteristics of a 500 monomer long linear alkane (polyethylene) chain with a realistic interaction potential. Both equilibrium and temperature quench simulation studies have been carried out. Using the shape anisotropy parameter (S) of the folded molecule as the order parameter, we find a weakly first order phase transition between the high-temperature molten globule and low-temperature rodlike crystalline states separated by a small barrier of the order of k(B)T. Near the melting temperature (580 K), we observe an intriguing intermittent fluctuation with pronounced ``1/f noise characteristics'' between these two states with large difference in shape and structure. We have also studied the possibilities of different pathways of folding to states much below the melting point. At 300 K starting from the all-trans linear configuration, the chain folds stepwise into a very regular fourfold crystallite with very high shape anisotropy. Whereas, when quenched from a high temperature (900 K) random coil regime, we identify a two step transition from the random coiled state to a molten globulelike state and, further, to a anisotropic rodlike state. The trajectory reveals an interesting coupling between the two order parameters, namely, radius of gyration (R-g) and the shape anisotropy parameter (S). The rodlike final state of the quench trajectory is characterized by lower shape anisotropy parameter and significantly larger number of gauche defects as compared to the final state obtained through equilibrium simulation starting from all-trans linear chain. The quench study shows indication of a nucleationlike pathway from the molten globule to the rodlike state involving an underlying rugged energy landscape. (C) 2010 American Institute of Physics. doi:10.1063/1.3509398]