942 resultados para electrostatics in proteins
Resumo:
The Escherichia coli endoribonuclease RNase E is essential for RNA processing and degradation. Earlier work provided evidence that RNase E exists intracellularly as part of a multicomponent complex and that one of the components of this complex is a 3'-to-5' exoribonuclease, polynucleotide phosphorylase (EC 2.7.7.8). To isolate and identify other components of the RNase E complex, FLAG-epitope-tagged RNase E (FLAG-Rne) fusion protein was purified on a monoclonal antibody-conjugated agarose column. The FLAG-Rne fusion protein, eluted by competition with the synthetic FLAG peptide, was found to be associated with other proteins. N-terminal sequencing of these proteins revealed the presence in the RNase E complex not only of polynucleotide phosphorylase but also of DnaK, RNA helicase, and enolase (EC 4.2.1.11). Another protein associated only with epitope-tagged temperature-sensitive (Rne-3071) mutant RNase E but not with the wild-type enzyme is GroEL. The FLAG-Rne complex has RNase E activity in vivo and in vitro. The relative amount of proteins associated with wild-type and Rne-3071 expressed at an elevated temperature differed.
Resumo:
Posttranscriptional regulation of genes of mammalian iron metabolism is mediated by the interaction of iron regulatory proteins (IRPs) with RNA stem-loop sequence elements known as iron-responsive elements (IREs). There are two identified IRPs, IRP1 and IRP2, each of which binds consensus IREs present in eukaryotic transcripts with equal affinity. Site-directed mutagenesis of IRP1 and IRP2 reveals that, although the binding affinities for consensus IREs are indistinguishable, the contributions of arginine residues in the active-site cleft to the binding affinity are different in the two RNA binding sites. Furthermore, although each IRP binds the consensus IRE with high affinity, each IRP also binds a unique alternative ligand, which was identified in an in vitro systematic evolution of ligands by exponential enrichment procedure. Differences in the two binding sites may be important in the function of the IRE-IRP regulatory system.
Resumo:
We have investigated the efficiency of packing by calculating intramolecular packing density above and below peptide planes of internal beta-pleated sheet residues in five globular proteins. The orientation of interest was chosen to allow study of regions that are approximately perpendicular to the faces of beta-pleated sheets. In these locations, nonbonded van der Waals packing interactions predominate over hydrogen bonding and solvent interactions. We observed considerable variability in packing densities within these regions, confirming that the interior packing of a protein does not result in uniform occupation of the available space. Patterns of fluctuation in packing density suggest that the regular backbone-to-backbone network of hydrogen bonds is not likely to be interrupted to maximize van der Waals interactions. However, high-density packing tends to occur toward the ends of beta-structure strands where hydrogen bonds are more likely to involve nonpolar side-chain groups or solvent molecules. These features result in internal protein folding with a central low-density core surrounded by a higher-density subsurface shell, consistent with our previous calculations regarding overall protein packing density.
Resumo:
Benzodiazepine (BZA)-5B, a CAAX farnesyl-transferase inhibitor, was previously shown to block the farnesylation of H-Ras and to reverse the transformed morphology of Rat1 cells expressing oncogenic H-RasV12. Non-transformed Rat1 cells were not affected by BZA-5B, suggesting that they produce a form of Ras whose prenylation is not blocked by this compound. The likely candidate is K-RasB, which differs from H-Ras primarily in the terminal 24 amino acids. In the current study we examined the effect of BZA-5B on the prenylation of a chimeric oncogenic Ras protein designated H/K-RasBV12, consisting of the first 164 amino acids of H-RasV12 followed by the last 24 amino acids of K-RasB. BZA-5B failed to block the prenylation of this chimera and was thus unable to reverse the transformed morphology of Rat1 cells in which it was expressed. Another potent inhibitor of H-Ras farnesylation, L-739,749, also failed to block prenylation of H/K-RasBV12. Similar results were obtained in transfected cells expressing a widely used version of K-RasBV12 containing a 10-amino acid extension at its NH2 terminus. Neither BZA-5B nor L-739,749 reversed the transformed morphology of cells expressing H/K-RasBV12. The resistance of K-RasB to farnesyltransferase inhibition provides a likely explanation for the resistance of nontransformed cells to the growth inhibitory effects of BZA-5B and L-739,749.
Resumo:
The closely related multidrug efflux pumps QacA and QacB, from the bacterial pathogen Staphylococcus aureus, both confer resistance to various toxic organic cations but differ in that QacB mediates lower levels of resistance to divalent cations. Cloning and nucleotide sequencing of the qacB gene revealed that qacB differs from qacA by only seven nucleotide substitutions. Random hydroxylamine mutagenesis of qacB was undertaken, selecting for variants that conferred increased resistance to divalent cations. Both QacA and the QacB mutants capable of conferring resistance to divalent cations contain an acidic residue at either amino acid 322 or 323, whereas QacB contains uncharged residues in these positions. Site-directed mutagenesis of qacA confirmed the importance of an acidic residue within this region of QacA in conferring resistance to divalent cations. Membrane topological analysis using alkaline phosphatase and beta-galactosidase fusions indicated that the QacA protein contains 14 transmembrane segments. Thus, QacA represents the first membrane transport protein shown to contain 14 transmembrane segments, and confirms that the major facilitator superfamily contains a family of proteins with 14 transmembrane segments.
Resumo:
In previous experiments, the homeodomain proteins even-skipped and fushi-tarazu were found to UV cross-link to a surprisingly wide array of DNA sites in living Drosophila embryos. We now show that UV cross-linking gives a highly accurate measure of DNA binding by these proteins. In addition, the binding of even-skipped and fushi-tarazu proteins has been measured in vitro to the same DNA fragments that were examined in vivo. This analysis shows that these proteins have broad DNA recognition properties in vitro that are likely to be important determinants of their distribution on DNA in vivo, but it also shows that in vitro DNA binding specificity alone is not sufficient to explain the distribution of these proteins in embryos.
Resumo:
Antibody-cytokine fusion proteins combine the unique targeting ability of antibodies with the multifunctional activity of cytokines. Here, we demonstrate the therapeutic efficacy of such constructs for the treatment of hepatic and pulmonary metastases of different melanoma cell lines. Two antibody-interleukin 2 (IL-2) fusion proteins, ch225-IL2 and ch14.18-IL2, constructed by fusion of a synthetic sequence coding for human IL-2 to the carboxyl end of the Cgamma1 gene of the corresponding antibodies, were tested for their therapeutic efficacy against xenografted human melanoma in vivo. Tumor-specific fusion proteins completely inhibited the growth of hepatic and pulmonary metastases in C.B-17 scid/scid mice previously reconstituted with human lymphokine-activated killer cells, whereas treatment with combinations of the corresponding antibodies plus recombinant IL-2 only reduced the tumor load. Even when treatment with fusion proteins was delayed up to 8 days after inoculation of tumor cells, it still resulted in complete eradication of micrometastases that were established at that time point. Selection of tumor cell lines expressing or lacking the targeted antigen of the administered fusion protein proved the specificity of the observed antitumor effect. Biodistribution analysis demonstrated that the tumor-specific fusion protein accumulated not only in subcutaneous tumors but also in lungs and livers affected with micrometastases. Survival times of animals treated with the fusion protein were more than doubled as compared to those treated with the combination of the corresponding antibody plus IL-2. Our data demonstrate that an immunotherapeutic approach using cytokines targeted by antibodies to tumor sites has potent effects against disseminated human melanoma.
Resumo:
A transcription interference assay was used to generate mutant basic region-leucine zipper proteins with altered DNA-binding specificities. A library of mutants of a CCAAT/enhancer binding protein was constructed by randomizing five DNA-contacting amino acids in the basic region Asn-18, Ala-15, Val-14, Ser-11, and Arg-10. These mutants were then selected for their ability to bind mutant recognition sequences containing substitutions at the 2 and 3 positions of the wild-type sequence 5'-A5T4T3G2C1G1'C2'A3A4'T5'-3'. Mutants containing the sequence Leu-18Tyr-15Xaa-14Tyr-11Arg-10, in which four of the five contact residues are altered, were identified that recognize the palindromic sequence 5'-ATCYCGY'GAT-3' (Xaa = asparagine when Y = G; Xaa = methionine when Y = A). Moreover, in a selection against the sequence 5'-ATTACGTAAT-3', mutants were obtained containing substitutions not only in the basic region but also in the hinge region between the basic and leucine zipper regions. The mutant proteins showed high specificity in a functional transcription interference assay. A model for the interaction of these mutants with the target DNA sequences is discussed.
Resumo:
The final step in the pathway that provides for glycosylphosphatidylinositol (GPI) anchoring of cell-surface proteins occurs in the lumen of the endoplasmic reticulum and consists of a transamidation reaction in which fully assembled GPI anchor donors are substituted for specific COOH-terminal signal peptide sequences contained in nascent polypeptides. In previous studies we described a human K562 cell mutant line, designated class K, which assembles all the known intermediates of the GPI pathway but fails to display GPI-anchored proteins on its surface membrane. In the present study, we used mRNA encoding miniPLAP, a truncated form of placental alkaline phosphatase (PLAP), in in vitro assays with rough microsomal membranes (RM) of mutant K cells to further characterize the biosynthetic defect in this line. We found that RM from mutant K cells supported NH2-terminal processing of the nascent translational product, preprominiPLAP, but failed to show any detectable COOH-terminal processing of the resulting prominiPLAP to GPI-anchored miniPLAP. Proteinase K protection assays verified that NH2-terminal processed prominiPLAP was appropriately translocated into the endoplasmic reticulum lumen. The addition of hydrazine or hydroxylamine, which can substitute for GPI donors, to RM from wild-type or mutant cells defective in various intermediate biosynthetic steps in the GPI pathway produced large amounts of the hydrazide or hydroxamate of miniPLAP. In contrast, the addition of these nucleophiles to RM of class K cells yielded neither of these products. These data, taken together, lead us to conclude that mutant K cells are defective in part of the GPI transamidase machinery.
Resumo:
In rats and humans, metabolic acidosis stimulates protein degradation and glucocorticoids have been implicated in this response. To evaluate the importance of glucocorticoids in stimulating proteolysis, we measured protein degradation in BC3H1 myocytes cultured in 12% serum. Acidification accelerated protein degradation but dexamethasone did not augment this response. To reduce the influence of glucocorticoids and other hormones and cytokines in 12% serum that could mediate proteolysis, we studied BC3H1 myocytes maintained in only 1% serum. Acidification of the medium or addition of dexamethasone at pH 7.4 did not significantly increase protein degradation, while acidification plus dexamethasone accelerated proteolysis. The steroid receptor antagonist RU 486 prevented this proteolytic response. Acidification of the medium with 1% serum did increase the mRNAs for ubiquitin and the C2 proteasome subunit, but when dexamethasone was added the mRNAs were increased significantly more. The steroid-receptor antagonist RU 486 suppressed this response to the addition of dexamethasone but the mRNAs remained at the levels measured in cells at pH 7.1 alone. Thus, acidification alone can increase the mRNAs of the ubiquitin-proteasome proteolytic pathway, but both acidosis and glucocorticoids are required to stimulate protein degradation. Since these changes occur without adding cytokines or other hormones, we conclude that the proteolytic response to acidification requires glucocorticoids.
Resumo:
Several human neurological disorders are associated with proteins containing abnormally long runs of glutamine residues. Strikingly, most of these proteins contain two or more additional long runs of amino acids other than glutamine. We screened the current human, mouse, Drosophila, yeast, and Escherichia coli protein sequence data bases and identified all proteins containing multiple long homopeptides. This search found multiple long homopeptides in about 12% of Drosophila proteins but in only about 1.7% of human, mouse, and yeast proteins and none among E. coli proteins. Most of these sequences show other unusual sequence features, including multiple charge clusters and excessive counts of homopeptides of length > or = two amino acid residues. Intriguingly, a large majority of the identified Drosophila proteins are essential developmental proteins and, in particular, most play a role in central nervous system development. Almost half of the human and mouse proteins identified are homeotic homologs. The role of long homopeptides in fine-tuning protein conformation for multiple functional activities is discussed. The relative contributions of strand slippage and of dynamic mutation are also addressed. Several new experiments are proposed.
Resumo:
The presence of proteins associated with the CaCO3-containing biocrystals found in a wide variety of marine organisms is well established. In these organisms, including the primitive skeleton (spicule) of the sea urchin embryo, the structural and functional role of these proteins either in the biomineralization process or in control of the structural features of the biocrystals is unclear. Recently, one of the matrix proteins of the sea urchin spicule, SM 30, has been shown to contain a carbohydrate chain (the 1223 epitope) that has been implicated in the process whereby Ca2+ is deposited as CaCo3. Because an understanding of the localization of this protein, as well as other proteins found within the spicule, is central to understanding their function, we undertook to develop methods to localize spicule matrix proteins in intact spicules, using immunogold techniques and scanning electron microscopy. Gold particles indicative of this matrix glycoprotein could not be detected on the surface of spicules that had been isolated from embryo homogenates and treated with alkaline hypochlorite to remove any associated membranous material. However, when isolated spicules were etched for 2 min with dilute acetic acid (10 mM) to expose more internal regions of the crystal, SM 30 and perhaps other proteins bearing the 1223 carbohydrate epitope were detected in the calcite matrix. These results, indicating that these two antigens are widely distributed in the spicule, suggest that this technique should be applicable to any matrix protein for which antibodies are available.
Resumo:
The purpose of this study was to identify guanine nucleotide-binding proteins (G proteins) involved in the agonist- and guanosine 5'-[gamma-thio]triphosphate (GTP[gamma-S])-induced increase in the Ca2+ sensitivity of 20-kDa myosin light chain (MLC20) phosphorylation and contraction in smooth muscle. A constitutively active, recombinant val14p21rhoA.GTP expressed in the baculovirus/Sf9 system, but not the protein expressed without posttranslational modification in Escherichia coli, induced at constant Ca2+ (pCa 6.4) a slow contraction associated with increased MLC20 phosphorylation from 19.8% to 29.5% (P < 0.05) in smooth muscle permeabilized with beta-esein. The effect of val14p21rhoA.GTP was inhibited by ADP-ribosylation of the protein and was absent in smooth muscle extensively permeabilized with Triton X-100. ADP-ribosylation of endogenous p21rho with epidermal cell differentiation inhibitor (EDIN) inhibited Ca2+ sensitization induced by GTP [in rabbit mesenteric artery (RMA) and rabbit ileum smooth muscles], by carbachol (in rabbit ileum), and by endothelin (in RMA), but not by phenylephrine (in RMA), and only slowed the rate without reducing the amplitude of contractions induced in RMA by 1 microM GTP[gamma-S] at constant Ca2+ concentrations. AlF(4-)-induced Ca2+ sensitization was inhibited by both guanosine 5'-[beta-thio]diphosphate (GDP[beta-S]) and by EDIN. EDIN also inhibited, to a lesser extent, contractions induced by Ca2+ alone (pCa 6.4) in both RMA and rabbit ileum. ADP-ribosylation of trimeric G proteins with pertussis toxin did not inhibit Ca2+ sensitization. We conclude that p21rho may play a role in physiological Ca2+ sensitization as a cofactor with other messengers, rather than as a sole direct inhibitor of smooth muscle MLC20 phosphatase.
Resumo:
The ALLI gene, located at chromosome band 11q23, is involved in acute leukemia through a series of chromosome translocations and fusion to a variety of genes, most frequently to A4 and AF9. The fused genes encode chimeric proteins proteins. Because the Drosophila homologue of ALL1, trithorax, is a positive regulator of homeotic genes and acts at the level of transcription, it is conceivable that alterations in ALL1 transcriptional activity may underlie its action in malignant transformation. To begin studying this, we examined the All1, AF4, AF9, and AF17 proteins for the presence of potential transcriptional regulatory domains. This was done by fusing regions of the proteins to the yeast GAL4 DNA binding domain and assaying their effect on transcription of a reporter gene. A domain of 55 residues positioned at amino acids 2829-2883 of ALL1 was identified as a very strong activator. Further analysis of this domain by in vitro mutagenesis pointed to a core of hydrophobic and acidic residues as critical for the activity. An ALL1 domain that repressed transcription of the reporter gene coincided with the sequence homologous to a segment of DNA methyltransferase. An AF4 polypeptide containing residues 480-560 showed strong activation potential. The C-terminal segment of AF9 spanning amino acids 478-568 transactivated transcription of the reporter gene in HeLa but not in NIH 3T3 cells. These results suggest that ALL1, AF4, and probably AF9 interact with the transcriptional machinery of the cell.
Resumo:
Deletion of the clathrin heavy-chain gene, CHC1, in the budding yeast Saccharomyces cerevisiae results in growth, morphological, and membrane trafficking defects, and in some strains chc1-delta is lethal. A previous study identified five genes which, in multicopy, rescue inviable strains of Chc- yeast. Now we report that one of the suppressor loci, BMH2/SCD3, encodes a protein of the 14-3-3 family. The 14-3-3 proteins are abundant acidic proteins of approximately 30 kDa with numerous isoforms and a diverse array of reported functions. The Bmh2 protein is > 70% identical to the mammalian epsilon-isoform and > 90% identical to a previously reported yeast 14-3-3 protein encoded by BMH1. Single deletions of BMH1 or BMH2 have no discernable phenotypes, but deletion of both BMH1 and BMH2 is lethal. High-copy BMH1 also rescues inviable strains of Chc- yeast, although not as well as BMH2. In addition, the slow growth of viable strains of Chc- yeast is further impaired when combined with single bmh mutations, often resulting in lethality. Overexpression of BMH genes also partially suppresses the temperature sensitivity of the cdc25-1 mutant, and high-copy TPK1, encoding a cAMP-dependent protein kinase, restores Bmh- yeast to viability. High-copy TPK1 did not rescue Chc- yeast. These genetic interactions suggest that budding-yeast 14-3-3 proteins are multifunctional and may play a role in both vesicular transport and Ras signaling pathways.