995 resultados para electromechanical actuators


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Shape memory alloys (SMAs) provide a compact and effective actuation for a variety of mechanical systems. In this paper, a numerical simulation study of a three degree of-freedom airfoil, subjected to two-dimensional incompressible inviscid flow using a SMA is presented. SMA wire actuators are used to control the flap movement of a wing section. Through the thermo-mechanical constitutive equation of the SMA proposed by Brison, we simulate numerically the behavior of a double SMA wire actuator. Two SMA actuators are used: one to move the flap down and the other to move the flap up. Through the numerical results conducted in the present study, the behavior and characteristics of an SMA actuator with two SMA wires are shown the effectiveness of the SMA actuator. In conclusion, this paper shows the feasibility of using SMA wire actuators for flap movement, with success

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Automated Production Systems Development involves aspects concerning the integration of technological components that exist on the market, such as: Programmable Logic Controllers (PLC), robot manipulators, various sensors and actuators, image processing systems, communication networks and collaborative supervisory systems; all integrated into a single application. This paper proposes an automated platform for experimentation, implemented through typical architecture for Automated Production Systems, which integrates the technological components described above, in order to allow researchers and students to carry out practical laboratory activities. These activities will complement the theoretical knowledge acquired by the students in the classroom, thus improving their training and professional skills. A platform designed using this generic structure will allow users to work within an educational environment that reflects most aspects found in Industrial Automated Manufacturing Systems, such as technology integration, communication networks, process control and production management. In addition, this platform offers the possibility complete automated process of control and supervision via remote connection through the internet (WebLab), enabling knowledge sharing between different teaching and research groups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Networked control systems (NCSs) are distributed control system in which sensors, actuators and controllers are physically separated and connected through communication networks. NCS represent the evolution of networked control architectures providing greater modularity and control decentralization, ease maintenance and diagnosis and lower cost of implementation. A recent trend in this research topic is the development of NCS using wireless networks(WNCS)which enable interoperability between existing wiredand wireless systems. This paper presents the feasibility analysis of using serial to wireless converter as a wireless sensor link in NCS. In order to support this investigation, relevant performance metrics for wireless control applications such as jitter, time delay and messages lost are highlighted and calculated to evaluate the wireless converter capabilities. In addition the control performance of an implemented motor control system using the converter is analyzed. Experimental results led to the conclusion that serial ZigBee device isrecommended against the Bluetooth as it provided better metrics for control applications. However, bothdevices can be used to implement WNCS providing transmission rates and closed control loop times which are acceptable for NCS applications.Moreoverthe use of thewireless device delay in the PID controller discretization can improve the control performance of the system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Networked control systems (NCSs) are distributed control systems in which the sensors, actuators, and controllers are physically separated and connected through an industrial network. The main challenge related to the development of NCSs is the degenerative effects caused by the inclusion of this communication network in the closed loop control. In order to mitigate these effects, co-simulation tools for NCS have been developed to study the network influence in the NCS. This paper presents a revision about co-simulation tools for NCS and the application of two of these tools for the design and evaluation of NCSs. The TrueTime and Jitterbug tools were used together to evaluate the main configuration parameter that affects the performance of CAN-based NCS and to verify the NCS quality of control under various timing conditions including different transmission period of messages and network delays. Therefore, the simulation results led to the conclusion that despite the transmission period of messages is the most significant factor among the analyzed in the design of NCS, its influence is related to the kind of system with greater effects in NCSs with fast dynamics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper the dynamical interactions of a double pendulum arm and an electromechanical shaker is investigated. The double pendulum is a three degree of freedom system coupled to an RLC circuit based nonlinear shaker through a magnetic field, and the capacitor voltage is a nonlinear function of the instantaneous electric charge. Numerical simulations show the existence of chaotic behavior for some regions in the parameter space and this behaviour is characterized by power spectral density and Lyapunov exponents. The bifurcation diagram is constructed to explore the qualitative behaviour of the system. This kind of electromechanical system is frequently found in robotic systems, and in order to suppress the chaotic motion, the State-Dependent Riccati Equation (SDRE) control and the Nonlinear Saturation control (NSC) techniques are analyzed. The robustness of these two controllers is tested by a sensitivity analysis to parametric uncertainties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Micro-electromechanical systems (MEMS) are micro scale devices that are able to convert electrical energy into mechanical energy or vice versa. In this paper, the mathematical model of an electronic circuit of a resonant MEMS mass sensor, with time-periodic parametric excitation, was analyzed and controlled by Chebyshev polynomial expansion of the Picard interaction and Lyapunov-Floquet transformation, and by Optimal Linear Feedback Control (OLFC). Both controls consider the union of feedback and feedforward controls. The feedback control obtained by Picard interaction and Lyapunov-Floquet transformation is the first strategy and the optimal control theory the second strategy. Numerical simulations show the efficiency of the two control methods, as well as the sensitivity of each control strategy to parametric errors. Without parametric errors, both control strategies were effective in maintaining the system in the desired orbit. On the other hand, in the presence of parametric errors, the OLFC technique was more robust.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The elimination of all external incisions is an important step in reducing the invasiveness of surgical procedures. Natural Orifice Translumenal Endoscopic Surgery (NOTES) is an incision-less surgery and provides explicit benefits such as reducing patient trauma and shortening recovery time. However, technological difficulties impede the widespread utilization of the NOTES method. A novel robotic tool has been developed, which makes NOTES procedures feasible by using multiple interchangeable tool tips. The robotic tool has the capability of entering the body cavity through an orifice or a single incision using a flexible articulated positioning mechanism and once inserted is not constrained by incisions, allowing for visualization and manipulations throughout the cavity. Multiple interchangeable tool tips of the robotic device initially consist of three end effectors: a grasper, scissors, and an atraumatic Babcock clamp. The tool changer is capable of selecting and switching between the three tools depending on the surgical task using a miniature mechanism driven by micro-motors. The robotic tool is remotely controlled through a joystick and computer interface. In this thesis, the following aspects of this robotic tool will be detailed. The first-generation robot is designed as a conceptual model for implementing a novel mechanism of switching, advancing, and controlling the tool tips using two micro-motors. It is believed that this mechanism achieves a reduction in cumbersome instrument exchanges and can reduce overall procedure time and the risk of inadvertent tissue trauma during exchanges with a natural orifice approach. Also, placing actuators directly at the surgical site enables the robot to generate sufficient force to operate effectively. Mounting the multifunctional robot on the distal end of an articulating tube provides freedom from restriction on the robot kinematics and helps solve some of the difficulties otherwise faced during surgery using NOTES or related approaches. The second-generation multifunctional robot is then introduced in which the overall size is reduced and two arms provide 2 additional degrees of freedom, resulting in feasibility of insertion through the esophagus and increased dexterity. Improvements are necessary in future iterations of the multifunctional robot; however, the work presented is a proof of concept for NOTES robots capable of abdominal surgical interventions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, a method of computing PD stabilising gains for rotating systems is presented based on the D-decomposition technique, which requires the sole knowledge of frequency response functions. By applying this method to a rotating system with electromagnetic actuators, it is demonstrated that the stability boundary locus in the plane of feedback gains can be easily plotted, and the most suitable gains can be found to minimise the resonant peak of the system. Experimental results for a Laval rotor show the feasibility of not only controlling lateral shaft vibration and assuring stability, but also helps in predicting the final vibration level achieved by the closed-loop system. These results are obtained based solely on the input-output response information of the system as a whole.