894 resultados para determination of LAB
Resumo:
A sensitive, precise, and specific high-performance liquid chromatography (HPLC) method was developed for the assay of lomefloxacin (LFLX) in raw material and tablet preparations. The method validation parameters yielded good results and included the range, linearity, precision, accuracy, specificity, and recovery. It was also found that the excipients in the commercial tablet preparation did not interfere with the assay. The HPLC separation was performed on a reversed-phase Phenomenex C18 column (150 x 4.6 mm id, 5 pm particle size) with a mobile phase composed of 1% acetic acid-acetonitrile-methanol (70 + 15 + 15, v/v/v), pumped isocratically at a flow rate of 1.0 mL/min. The effluent was monitored at 280 nm. The calibration graph for LFLX was linear from 2.0 to 7.0 mg/mL. The interday and intraday precisions (relative standard deviation) were less than 1.0%. The method was applied for the quality control of commercial LFLX tablets to quantitate the drug.
Resumo:
The determination of leukocyte alkaline phosphatasd (LAP) is used as an aid to diagnose many diseases in the laboratory. For example, it can be used to distinguish chronic myeloid leukemia (CML) from other myeloproliferative disorders (particularly myelofibrosis and polycythemia) and leukemoid reactions (LR). Traditionally, this test is performed with the use of subjective cytochemical assays that assign a score to the level of LAP. Here we present a nonsubjective, quantitative, sensitive, and inexpensive chemiluminescent technique that determines LAP based on the commercial reagent Immulite (R) (AMPPD). To validate this methodology, intact leukocytes obtained from 32 healthy subjects, nine CML patients, and nine LR patients were submitted to the optimized protocol. By measuring the light emission elicited by four concentrations of neutrophils, we were able to estimate the activity of LAP per cell (the slope of the curve obtained by linear regression). A high linear correlation was found between the chemiluminescent result (slope) and the cytochemical score. The slope for healthy individuals ranged between 0.61 and 8.49 (10(-5) mV.s/cell), with a median of 2.04 (10(-5) mV.s/cell). These results were statistically different from those of CML patients (range = 0.07-1.75, median = 0.79) and LR patients (range = 3.84-47.24, median 9.58; P < 0.05).
Resumo:
A sensitive, accurate, reliable and easy method was developed for the quantification of oxamniquine in capsules using high-performance liquid chromatography (HPLC) with UV detection. This technique provided conditions for the separation of the active ingredient from the dosage form by extraction in methanol. Isocratic reversed phase chromatography was performed using methanol, water, and triethanolamine (60:40:0.099, v/v/w) (System C) or methanol, acetonitrile, water and formic acid (40:30:30:0.083, v/v/w) (System D) as mobile phase, a stainless steel column (125 x 4 mm i.d., 5 mum) filled with LiChrospher 100 RP-18 (Merck), column temperature of 28 +/- 2 degreesC and detection at 260 nm. The calibration curves were linear over a wide concentration range (1.0-20.0 mug ml(-1) of oxamniquine) to the Systems C and D with good correlation factor (0.9990 and 0.9982, respectively). The average content obtained were 100.1 +/- 1.5% (System C) and 102.4 +/- 0.8% (System D). The presence of lactose, starch, magnesium stearate and sodium laurylsulphate did not interfere in the results of the analysis. The above findings showed the proposed method to be both simple and added advantage of allowing for fast analysis. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
An analytical procedure has been developed for simultaneous determination of solvent mixture vapors to enable evaluation of occupational exposure. To determine the desorption efficiency the volatile components of the solvent mixtures were generated from a glass tube filled with glass wool. This device is easy to prepare and use. These vapors were then collected in activated charcoal tubes and analyzed by capillary gas chromatography. The method was tested with a mixture of 22 solvents, including aliphatic and aromatic hydrocarbons, alcohols, ethers, esters, and ketones, oil at low concentrations. All the components were defected. When a 99: 1 mixture of carbon disulfide-dimethylformamide was used for desorption the efficiency was > 75% for most of the solvents.
Resumo:
Simple and rapid procedures were developed for the quantification of amfepramone hydrochloride and diazepam and mazindol and diazepam in tablets using high performance liquid chromatography (HPLC) with UV detection. These techniques provided conditions for the separation of each active ingredient from the complex matrices of the dosage forms by dilution or extraction in methanol. Isocratic reversed phase chromatography was performed using acetonitrile, methanol, and aqueous 0,1% ammonium carbonate (70:10:20, v/v/v) as a mobile phase, Radial-Pak C-18 column (100 x 8 mm id, 4 mu m), a column temperature of 25+/-1 degrees C and detection at 255 nm. The calibration curves were linear over a wide concentration range (100-1000 mu g.mL(-1) to amfepramone hydrochloride and mazindol and 10-100 mu g.mL(-1) to diazepam) with good correlation factors of 0.9978, 0.9956 and 0.9997 for amfepramone hydrochloride, mazindol, and diazepam, respectively.Mean recoveries obtained from the two kinds of samples ranged from 83.2 to 102.5%, with coefficients of variation ranging from 1.0 to 6.1.These results demonstrated the efficiency of the proposed methods, as well as advantages such as simplicity and short duration of analysis.
Resumo:
A visible light spectrophotometric method is described for them determination of sparfloxacin in tablets. The procedure is based on the complexation of bromothymol blue 0.5% and sparfloxacin to form a compound of yellow colour with maximum absorption at 385 nm. The Lambert-Beer law was obeyed in the concentration range of 2-12 mg/l. The present study describes a sensitive and accurate method for the determination of the concentration of sparfloxacin in tablets. It was also found that the excipients in the commercial tablet preparation did not interfere with the assay.
Resumo:
Cyclic oligomers were identified in PET bottles used for mineral water and fruit juice using MS and H-1 and C-13 NMR: a first series cyclic trimer, a first series cyclic tetramer, a first series cyclic dimmer and a second series cyclic trimer. An analytical method to determine first series cyclic trimer in these bottles was developed and validated, using HPLC. The first series cyclic trimer levels were 316-462 mg/100 g of PET bottle. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A practical set of HPLC methods was developed for the separation and determination of the eggplant steroidal glycoalkaloids, solanine, chaconine, solasonine, solamargine, and their aglycones, solasodine and solanidine. A gradient method was initially developed, but proved to be neither robust nor practical. Three separate isocratic methods using acetonitrile and ammonium dihydrogen phosphate were developed and shown to be more repeatable, less subject to fluctuations in mobile phase composition, and less time consuming. The effect of adjusting buffer pH, column temperature, and buffer type (triethylammonium phosphate vs. ammonium dihydrogen phosphate) were evaluated. It was also discovered that, by addition of 10% methanol to the acetonitrile portion of the mobile phase, more control over the separations was possible. The use of methanol as a mobile phase entrainer greatly improved separations in some cases and its effectiveness was also dependent upon column temperature. Assessments of the method recovery, limit of detection, and limit of quantitation were made using extracts from S. melongena and S. linnaeanum.
Resumo:
A rapid, accurate, and sensitive high-performance liquid chromatographic (HPLC) method was developed and validated for the determination of ceftazidime in pharmaceuticals. The method validation parameters yielded good results and included range, linearity, precision, accuracy, specificity, and recovery. The excipients in the commercial powder for injection did not interfere with the assay. Reversed-phase chromatography was used for the HPLC separation on a Waters C18 (WAT 054275; Milford, MA) column with methanol-water (70 + 30, v/v) as the mobile phase pumped isocratically at a flow rate of 1.0 mL/min. The effluent was monitored at 245 nm. The calibration graph for ceftazidime was linear from 50.0 to 300.0 mu g/mL. The values for interday and intraday precision (relative standard deviation) were < 1 %. The results obtained by the HPLC method were calculated statistically by analysis of variance. We concluded that the HPLC method is satisfactory for the determination of ceftazidime in the raw material and pharmaceuticals.