996 resultados para dentine exposure ratio
Resumo:
Solid phase microextraction (SPME) has been widely used for many years in various applications, such as environmental and water samples, food and fragrance analysis, or biological fluids. The aim of this study was to suggest the SPME method as an alternative to conventional techniques used in the evaluation of worker exposure to benzene, toluene, ethylbenzene, and xylene (BTEX). Polymethylsiloxane-carboxen (PDMS/CAR) showed as the most effective stationary phase material for sorbing BTEX among other materials (polyacrylate, PDMS, PDMS/divinylbenzene, Carbowax/divinylbenzene). Various experimental conditions were studied to apply SPME to BTEX quantitation in field situations. The uptake rate of the selected fiber (75 μm PDMS/CAR) was determined for each analyte at various concentrations, relative humidities, and airflow velocities from static (calm air) to dynamic (>200 cm/s) conditions. The SPME method also was compared with the National Institute of Occupational Safety and Health method 1501. Unlike the latter, the SPME approach fulfills the new requirement for the threshold limit value-short term exposure limit (TLV-STEL) of 2.5 ppm for benzene (8 mg/m3).
Resumo:
Objective: Bone cements and substitutes are commonly used in surgery to deliver antibiotics locally. The objective of this study was to assess the systemic absorption and disposition of vancomycin in patients treated with active calcium sulfate bone filler and to predict systemic concentrations under various conditions. Method: 277 blood samples were taken from 42 patients receiving vancomycin in bone cement during surgery. Blood samples were collected from 3h to 10 days after implantation. Vancomycin was measured by immunoenzymatic assay. Population pharmacokinetic (PK) analysis was performed using NONMEM to assess average estimates and variability of PK parameters. Based on the final model, simulations with various doses and renal function levels were performed. Results: The patients were 64 ± 20 years old, their body weight was 81 ± 22 kg and Cockcroft-Gault creatinine clearance (CLcr) 98 ± 55 mL/min. Vancomycin doses ranged from 200 mg to 6000 mg and implantation sites were hip (n=16), tibia (10) or others (16). Concentration profiles remained low and consistent with absorption rate-limited first-order release, while showing prominent variability. Mean clearance (CL) was 3.87 L/h (CV 35%), absorption rate constant (ka) 0.004 h-1 (66%) and volume of distribution (V) 9.5 L. Simulations with up to 8000 mg vancomycin implant showed systemic concentrations exceeding 20 mg/L for 3.5 days in 43% of the patients with CLcr 15 mL/min, whereas 7% of the patients with normal renal function had a concentration above 20 mg/L for 1.1 days. Subtherapeutic concentrations (0.4-4 mg/L) were predicted during a median of 22 days in patients with normal renal function and 4000 mg vancomycin implant, with limited influence of dose or renal function. Conclusion: Vancomycin-laden calcium sulfate implant does not raise toxicity concern. Selection of resistant bacteria, such as Enterococcus and Staphylococcus species, might however be a concern, as simulations show persistent subtherapeutic systemic concentrations during 3 to 4 weeks in these patients.
Resumo:
Fossil bones and teeth of Late Pleistocene terrestrial mammals from Rhine River gravels (RS) and the North Sea (NS), that have been exposed to chemically and isotopically distinct diagenetic fluids (fresh water versus seawater), were investigated to study the effects of early diagenesis on biogenic apatite. Changes in phosphate oxygen isotopic composition (delta O-18(PO4)), nitrogen content (wt.% N) and rare earth element (REE) concentrations were measured along profiles within bones that have not been completely fossilized, and in skeletal tissues (bone, dentine, enamel) with different susceptibilities to diagenetic alteration. Early diagenetic changes of elemental and isotopic compositions of apatite in fossil bone are related to the loss of the stabilizing collagen matrix. The REE concentration is negatively correlated with the nitrogen content, and therefore the amount of collagen provides a sensitive proxy for early diagenetic alteration. REE patterns of RS and NS bones indicate initial fossilization in a fresh water fluid with similar REE compositions. Bones from both settings have nearly collagen-free, REE-, U-, F- and Sr-enriched altered outer rims, while the collagen-bearing bone compacta in the central part often display early diagenetic pyrite void-fillings. However, NS bones exposed to Holocene seawater have outer rim delta O-18(PO4) values that are 1.1 to 2.6 parts per thousand higher compared to the central part of the same bones (delta O-18(PO4) = 18.2 +/- 0.9 parts per thousand, n = 19). Surprisingly, even the collagen-rich bone compacta with low REE contents and apatite crystallinity seems altered, as NS tooth enamel (delta O-18(PO4) =15.0 +/- 0.3 parts per thousand, n=4) has about 3%. lower delta O-18(PO4) values, values that are also similar to those of enamel from RS teeth. Therefore, REE concentration, N content and apatite crystallinity are in this case only poor proxies for the alteration of delta O-18(PO4) values. Seawater exposure of a few years up to 8 kyr can change the delta O-18(PO4) values of the bone apatite by > 3 parts per thousand. Therefore, bones fossilized in marine settings must be treated with caution for palaeoclimatic reconstructions. However, enamel seems to preserve pristine delta O-18(PO4) values on this time scale. Using species-specific calibrations for modern mammals, a mean delta O-18(H2O) value can be reconstructed for Late Pleistocene mammalian drinking water of around -9.2 +/- 0.5 parts per thousand, which is similar to that of Late Pleistocene groundwater from central Europe. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Nanomaterials with structures in the nanoscale (1 to 100 nm) often have chemical, physical and bioactive characteristics different from those of larger entities of the same material. This is interesting for industry but raises questions about the health of exposed people. However, little is known so far about the exposure of workers to inhalable airborne nanomaterials. We investigated several activities in research laboratories and industry to learn about relevant exposure scenarios. Work process analyses were combined with measurements of airborne particle mass concentrations and number−size distributions. Background levels in research settings were mostly low, while in industrial production, levels were sometimes elevated, especially in halls near busy roads or in the presence of diesel fork lifts without particle filters. Peak levels were found in an industrial setting dealing with powders (up to 80,000 particles/cm³ and up to 15 mg/m³). Mostly low concentrations were found for activities involving liquid applications. However, centrifugation and lyophilization of nanoparticle containing solutions resulted in very high particle number concentrations (up to 300,000 particles/cm³), whereas no increases were seen for the same activities conducted with nanoparticle−free liquids. No significant increases of particle concentrations were found for processes involving nanoparticles bound to surfaces. Also no increases were observed in laboratories that were visualizing properties and structures of small amounts of nanomaterials. Conclusion: When studying exposure scenarios for airborne nanomaterials, the focus should not only be on processes involving nano−powders, but also on processes involving intensively treated nanoparticle−containing liquids. Acknowledgement: We thank Chantal Imhof, MSc and Guillaume Ferraris, MSc for their contributions.
Resumo:
This study investigated the contribution of sources and establishment characteristics, on the exposure to fine particulate matter (PM(2.5)) in the non-smoking sections of bars, cafes, and restaurants in central Zurich. PM(2.5)-exposure was determined with a nephelometer. A random sample of hospitality establishments was investigated on all weekdays, from morning until midnight. Each visit lasted 30 min. Numbers of smokers and other sources, such as candles and cooking processes, were recorded, as were seats, open windows, and open doors. Ambient air pollution data were obtained from public authorities. Data were analysed using robust MM regression. Over 14 warm, sunny days, 102 establishments were measured. Average establishment PM(2.5) concentrations were 64.7 microg/m(3) (s.d. = 73.2 microg/m(3), 30-min maximum 452.2 microg/m(3)). PM(2.5) was significantly associated with the number of smokers, percentage of seats occupied by smokers, and outdoor PM. Each smoker increased PM(2.5) on average by 15 microg/m(3). No associations were found with other sources, open doors or open windows. Bars had more smoking guests and showed significantly higher concentrations than restaurants and cafes. Smokers were the most important PM(2.5)-source in hospitality establishments, while outdoor PM defined the baseline. Concentrations are expected to be even higher during colder, unpleasant times of the year. PRACTICAL IMPLICATIONS: Smokers and ambient air pollution are the most important sources of fine airborne particulate matter (PM(2.5)) in the non-smoking sections of bars, restaurants, and cafes. Other sources do not significantly contribute to PM(2.5)-levels, while opening doors and windows is not an efficient means of removing pollutants. First, this demonstrates the impact that even a few smokers can have in affecting particle levels. Second, it implies that creating non-smoking sections, and using natural ventilation, is not sufficient to bring PM(2.5) to levels that imply no harm for employees and non-smoking clients. [Authors]
Resumo:
By expressing an array of pattern recognition receptors (PRRs), fibroblasts play an important role in stimulating and modulating the response of the innate immune system. The TLR3 ligand polyriboinosinic acid-polyribocytidylic acid, poly(I:C), a mimic of viral dsRNA, is a vaccine adjuvant candidate to activate professional antigen presenting cells (APCs). However, owing to its ligation with extracellular TLR3 on fibroblasts, subcutaneously administered poly(I:C) bears danger towards autoimmunity. It is thus in the interest of its clinical safety to deliver poly(I:C) in such a way that its activation of professional APCs is as efficacious as possible, whereas its interference with non-immune cells such as fibroblasts is controlled or even avoided. Complementary to our previous work with monocyte-derived dendritic cells (MoDCs), here we sought to control the delivery of poly(I:C) surface-assembled on microspheres to human foreskin fibroblasts (HFFs). Negatively charged polystyrene (PS) microspheres were equipped with a poly(ethylene glycol) (PEG) corona through electrostatically driven coatings with a series of polycationic poly(L-lysine)-graft-poly(ethylene glycol) copolymers, PLL-g-PEG, of varying grafting ratios g from 2.2 up to 22.7. Stable surface assembly of poly(I:C) was achieved by incubation of polymer-coated microspheres with aqueous poly(I:C) solutions. Notably, recognition of both surface-assembled and free poly(I:C) by extracellular TLR3 on HFFs halted their phagocytic activity. Ligation of surface-assembled poly(I:C) with extracellular TLR3 on HFFs could be controlled by tuning the grafting ratio g and thus the chain density of the PEG corona. When assembled on PLL-5.7-PEG-coated microspheres, poly(I:C) was blocked from triggering class I MHC molecule expression on HFFs. Secretion of interleukin (IL)-6 by HFFs after exposure to surface-assembled poly(I:C) was distinctly lower as compared to free poly(I:C). Overall, surface assembly of poly(I:C) may have potential to contribute to the clinical safety of this vaccine adjuvant candidate.
Resumo:
This work was conducted to study alternatives for reduction of the bull:cow ratio in the Brazilian lowland and, therefore, lower the production costs for the local beef cattle industry. The ratios 1:10, 1:25, and 1:40 were used in native pastures with a mean stocking rate of 0.27 mature animal unit per hectare over two consecutive breeding seasons. Statistical analysis did not show any effect (P>0.05) of year (P = 0.2097), animal category (P = 0.0773), bull:cow ratio (0.8134) on reproductive performance. However, the pregnancy rate in a multiple bull system was higher (P = 0.0228) than in the individual bull system. An evaluation of the economic impact of this management system in the extensive Lowland herds showed that at the ratio of 1:10 the bulls were sub utilized.
Resumo:
Human biomonitoring is a widely used method in the assessment of occupational exposure to chemical substances and recommended biological limits are published periodically for interpretation and decision-making. However, it is increasingly recognized that a large variability is associated with biological monitoring, making interpretation less efficient than assumed. In order to improve the applicability of biological monitoring, specific factors responsible for this variability should be identified and their contribution quantified. Among these factors, age and sex are easily identifiable, and present knowledge about pharmaceutical chemicals suggests that they play an important role on the toxicokinetics of occupational chemical agents, and therefore on the biological monitoring results.The aim of the present research project was to assess the influence of age and sex on biological indicators corresponding to organic solvents. This has been done experimentally and by toxicokinetic computer simulation. Another purpose was to explore the effect of selected CYP2E1 polymorphisms on the toxicokinetic profile.Age differences were identified by numerical simulations using a general toxicokinetic model from a previous study which was applied to 14 chemicals, representing 21 specific biological entities, with, among others, toluene, phenol, lead and mercury. These models were runn with the modified parameters, indicating in some cases important differences due to age. The expected changes are mostly of the order of 10-20 %, but differences up to 50 % were observed in some cases. These differences appear to depend on the chemical and on the biological entity considered.Sex differences were quantified by controlled human exposures, which were carried out in a 12 m3 exposure chamber for three organic solvents separately: methyl ethyl ketone, 1-methoxy-2-propanol and 1,1,1-trichloroethane. The human volunteer groups were composed 12 of ten young men and fifteen young women, the latter subdivided into those with and without hormonal contraceptive. They were exposed during six hours at rest and at half of the threshold limit value. The kinetics of the parent compounds (organic volatiles) and their metabolite(s) were followed in blood, urine and expired air over time. Analyses of the solvent and their metabolites were performed by using headspace gas chromatography, CYP2E1 genotypes by using PCR-based RFLP methods. Experimental data were used to calibrate the toxicokinetic models developed for the three solvents. The results obtained for the different biomarkers of exposure mainly showed an effect on the urinary levels of several biomarkers among women due to the use of hormonal contraceptive, with an increase of about 50 % in the metabolism rate. The results also showed a difference due to the genotype CYP2E1*6, when exposed to methyl ethyl ketone, with a tendency to increase CYP2E1 activity when volunteers were carriers of the mutant allele. Simulations showed that it is possible to use simple toxicokinetic tools in order to predict internal exposure when exposed to organic solvents. Our study suggests that not only physiological differences but also exogenous sex hormones could influence CYP2E1 enzyme activity. The variability among the urinary biological indicators levels gives evidence of an interindividual susceptibility, an aspect that should have its place in the approaches for setting limits of occupational exposure.
Resumo:
Compartmental and physiologically based toxicokinetic modeling coupled with Monte Carlo simulation were used to quantify the impact of biological variability (physiological, biochemical, and anatomic parameters) on the values of a series of bio-indicators of metal and organic industrial chemical exposures. A variability extent index and the main parameters affecting biological indicators were identified. Results show a large diversity in interindividual variability for the different categories of biological indicators examined. Measurement of the unchanged substance in blood, alveolar air, or urine is much less variable than the measurement of metabolites, both in blood and urine. In most cases, the alveolar flow and cardiac output were identified as the prime parameters determining biological variability, thus suggesting the importance of workload intensity on absorbed dose for inhaled chemicals.
Resumo:
Nationwide surveys on radiation dose to the population from medical radiology are recommended in order to follow the trends in population exposure and ensure radiation protection. The last survey in Switzerland was conducted in 1998, and the annual effective dose from medical radiology was estimated to be 1 mSv y(-1) per capita. The purpose of this work was to follow the trends in diagnostic radiology between 1998 and 2008 in Switzerland and determine the contribution of different modalities and types of examinations to the collective effective dose from medical x-rays. For this reason, an online database (www.raddose.ch) was developed. All healthcare providers who hold a license to run an x-ray unit in the country were invited to participate in the survey. More than 225 examinations, covering eight radiological modalities, were included in the survey. The average effective dose for each examination was reassessed. Data from about 3,500 users were collected (42% response rate). The survey showed that the annual effective dose was 1.2 mSv/capita in 2008. The most frequent examinations are conventional and dental radiographies (88%). The contribution of computed tomography was only 6% in terms of examination frequency but 68% in terms of effective dose. The comparison with other countries showed that the effective dose per capita in Switzerland was in the same range as in other countries with similar healthcare systems, although the annual number of examinations performed in Switzerland was higher.
Resumo:
Exposure to fine airborne particulate matter (PM(2.5)) is associated with cardiovascular events and mortality in older and cardiac patients. Potential physiologic effects of in-vehicle, roadside, and ambient PM(2.5) were investigated in young, healthy, nonsmoking, male North Carolina Highway Patrol troopers. Nine troopers (age 23 to 30) were monitored on 4 successive days while working a 3 P.M. to midnight shift. Each patrol car was equipped with air-quality monitors. Blood was drawn 14 hours after each shift, and ambulatory monitors recorded the electrocardiogram throughout the shift and until the next morning. Data were analyzed using mixed models. In-vehicle PM(2.5) (average of 24 microg/m(3)) was associated with decreased lymphocytes (-11% per 10 microg/m(3)) and increased red blood cell indices (1% mean corpuscular volume), neutrophils (6%), C-reactive protein (32%), von Willebrand factor (12%), next-morning heart beat cycle length (6%), next-morning heart rate variability parameters, and ectopic beats throughout the recording (20%). Controlling for potential confounders had little impact on the effect estimates. The associations of these health endpoints with ambient and roadside PM(2.5) were smaller and less significant. The observations in these healthy young men suggest that in-vehicle exposure to PM(2.5) may cause pathophysiologic changes that involve inflammation, coagulation, and cardiac rhythm.
Resumo:
Two likelihood ratio (LR) approaches are presented to evaluate the strength of evidence of MDMA tablet comparisons. The first one is based on a more 'traditional' comparison of MDMA tablets by using distance measures (e.g., Pearson correlation distance or a Euclidean distance). In this approach, LRs are calculated using the distribution of distances between tablets of the same-batch and that of different-batches. The second approach is based on methods used in some other fields of forensic comparison. Here LRs are calculated based on the distribution of values of MDMA tablet characteristics within a specific batch and from all batches. The data used in this paper must be seen as examples to illustrate both methods. In future research the methods can be applied to other and more complex data. In this paper, the methods and their results are discussed, considering their performance in evidence evaluation and several practical aspects. With respect to evidence in favor of the correct hypothesis, the second method proved to be better than the first one. It is shown that the LRs in same-batch comparisons are generally higher compared to the first method and the LRs in different-batch comparisons are generally lower. On the other hand, for operational purposes (where quick information is needed), the first method may be preferred, because it is less time consuming. With this method a model has to be estimated only once in a while, which means that only a few measurements have to be done, while with the second method more measurements are needed because each time a new model has to be estimated.