902 resultados para data privacy
Resumo:
Self-reported health status measures are generally used to analyse Social Security Disability Insurance's (SSDI) application and award decisions as well as the relationship between its generosity and labour force participation. Due to endogeneity and measurement error, the use of self-reported health and disability indicators as explanatory variables in economic models is problematic. We employ county-level aggregate data, instrumental variables and spatial econometric techniques to analyse the determinants of variation in SSDI rates and explicitly account for the endogeneity and measurement error of the self-reported disability measure. Two surprising results are found. First, it is shown that measurement error is the dominating source of the bias and that the main source of measurement error is sampling error. Second, results suggest that there may be synergies for applying for SSDI when the disabled population is larger. © 2011 Taylor & Francis.
Resumo:
An investigation of the construction data management needs of the Florida Department of Transportation (FDOT) with regard to XML standards including development of data dictionary and data mapping. The review of existing XML schemas indicated the need for development of specific XML schemas. XML schemas were developed for all FDOT construction data management processes. Additionally, data entry, approval and data retrieval applications were developed for payroll compliance reporting and pile quantity payment development.
Resumo:
We consider the following problem: users in a dynamic group store their encrypted documents on an untrusted server, and wish to retrieve documents containing some keywords without any loss of data confidentiality. In this paper, we investigate common secure indices which can make multi-users in a dynamic group to obtain securely the encrypted documents shared among the group members without re-encrypting them. We give a formal definition of common secure index for conjunctive keyword-based retrieval over encrypted data (CSI-CKR), define the security requirement for CSI-CKR, and construct a CSI-CKR based on dynamic accumulators, Paillier’s cryptosystem and blind signatures. The security of proposed scheme is proved under strong RSA and co-DDH assumptions.
Resumo:
Social Engineering (ES) is now considered the great security threat to people and organizations. Ever since the existence of human beings, fraudulent and deceptive people have used social engineering tricks and tactics to trick victims into obeying them. There are a number of social engineering techniques that are used in information technology to compromise security defences and attack people or organizations such as phishing, identity theft, spamming, impersonation, and spaying. Recently, researchers have suggested that social networking sites (SNSs) are the most common source and best breeding grounds for exploiting the vulnerabilities of people and launching a variety of social engineering based attacks. However, the literature shows a lack of information about what types of social engineering threats exist on SNSs. This study is part of a project that attempts to predict a persons’ vulnerability to SE based on demographic factors. In this paper, we demonstrate the different types of social engineering based attacks that exist on SNSs, the purposes of these attacks, reasons why people fell (or did not fall) for these attacks, based on users’ opinions. A qualitative questionnaire-based survey was conducted to collect and analyse people’s experiences with social engineering tricks, deceptions, or attacks on SNSs.
Resumo:
This article presents the field applications and validations for the controlled Monte Carlo data generation scheme. This scheme was previously derived to assist the Mahalanobis squared distance–based damage identification method to cope with data-shortage problems which often cause inadequate data multinormality and unreliable identification outcome. To do so, real-vibration datasets from two actual civil engineering structures with such data (and identification) problems are selected as the test objects which are then shown to be in need of enhancement to consolidate their conditions. By utilizing the robust probability measures of the data condition indices in controlled Monte Carlo data generation and statistical sensitivity analysis of the Mahalanobis squared distance computational system, well-conditioned synthetic data generated by an optimal controlled Monte Carlo data generation configurations can be unbiasedly evaluated against those generated by other set-ups and against the original data. The analysis results reconfirm that controlled Monte Carlo data generation is able to overcome the shortage of observations, improve the data multinormality and enhance the reliability of the Mahalanobis squared distance–based damage identification method particularly with respect to false-positive errors. The results also highlight the dynamic structure of controlled Monte Carlo data generation that makes this scheme well adaptive to any type of input data with any (original) distributional condition.
Resumo:
A dynamic accumulator is an algorithm, which merges a large set of elements into a constant-size value such that for an element accumulated, there is a witness confirming that the element was included into the value, with a property that accumulated elements can be dynamically added and deleted into/from the original set. Recently Wang et al. presented a dynamic accumulator for batch updates at ICICS 2007. However, their construction suffers from two serious problems. We analyze them and propose a way to repair their scheme. We use the accumulator to construct a new scheme for common secure indices with conjunctive keyword-based retrieval.
Resumo:
With the introduction of Check 21 law and the development of FSTC's echeck system, there has been an increasing usage of e-cheque conversions and acceptance among retailers, banks, and consumers. However, the current e-cheque system does not address issues concerning privacy, confidentiality, and traceability. We highlight the issues concerning the current electronic cheque system and provide a solution to overcome those drawbacks.
Resumo:
A catchment-scale multivariate statistical analysis of hydrochemistry enabled assessment of interactions between alluvial groundwater and Cressbrook Creek, an intermittent drainage system in southeast Queensland, Australia. Hierarchical cluster analyses and principal component analysis were applied to time-series data to evaluate the hydrochemical evolution of groundwater during periods of extreme drought and severe flooding. A simple three-dimensional geological model was developed to conceptualise the catchment morphology and the stratigraphic framework of the alluvium. The alluvium forms a two-layer system with a basal coarse-grained layer overlain by a clay-rich low-permeability unit. In the upper and middle catchment, alluvial groundwater is chemically similar to streamwater, particularly near the creek (reflected by high HCO3/Cl and K/Na ratios and low salinities), indicating a high degree of connectivity. In the lower catchment, groundwater is more saline with lower HCO3/Cl and K/Na ratios, notably during dry periods. Groundwater salinity substantially decreased following severe flooding in 2011, notably in the lower catchment, confirming that flooding is an important mechanism for both recharge and maintaining groundwater quality. The integrated approach used in this study enabled effective interpretation of hydrological processes and can be applied to a variety of hydrological settings to synthesise and evaluate large hydrochemical datasets.
Resumo:
While data quality has been identified as a critical factor associated with enterprise resource planning (ERP) failure, the relationship between ERP stakeholders, the information they require and its relationship to ERP outcomes continues to be poorly understood. Applying stakeholder theory to the problem of ERP performance, we put forward a framework articulating the fundamental differences in the way users differentiate between ERP data quality and utility. We argue that the failure of ERPs to produce significant organisational outcomes can be attributed to conflict between stakeholder groups over whether the data contained within an ERP is of adequate ‘quality’. The framework provides guidance as how to manage data flows between stakeholders, offering insight into each of their specific data requirements. The framework provides support for the idea that stakeholder affiliation dictates the assumptions and core values held by individuals, driving their data needs and their perceptions of data quality and utility.
Resumo:
The objective of this chapter is to provide an overview of traffic data collection that can and should be used for the calibration and validation of traffic simulation models. There are big differences in availability of data from different sources. Some types of data such as loop detector data are widely available and used. Some can be measured with additional effort, for example, travel time data from GPS probe vehicles. Some types such as trajectory data are available only in rare situations such as research projects.
Resumo:
This project recognized lack of data analysis and travel time prediction on arterials as the main gap in the current literature. For this purpose it first investigated reliability of data gathered by Bluetooth technology as a new cost effective method for data collection on arterial roads. Then by considering the similarity among varieties of daily travel time on different arterial routes, created a SARIMA model to predict future travel time values. Based on this research outcome, the created model can be applied for online short term travel time prediction in future.
Resumo:
This research proposes the development of interfaces to support collaborative, community-driven inquiry into data, which we refer to as Participatory Data Analytics. Since the investigation is led by local communities, it is not possible to anticipate which data will be relevant and what questions are going to be asked. Therefore, users have to be able to construct and tailor visualisations to their own needs. The poster presents early work towards defining a suitable compositional model, which will allow users to mix, match, and manipulate data sets to obtain visual representations with little-to-no programming knowledge. Following a user-centred design process, we are subsequently planning to identify appropriate interaction techniques and metaphors for generating such visual specifications on wall-sized, multi-touch displays.
Resumo:
We consider the following problem: a user stores encrypted documents on an untrusted server, and wishes to retrieve all documents containing some keywords without any loss of data confidentiality. Conjunctive keyword searches on encrypted data have been studied by numerous researchers over the past few years, and all existing schemes use keyword fields as compulsory information. This however is impractical for many applications. In this paper, we propose a scheme of keyword field-free conjunctive keyword searches on encrypted data, which affirmatively answers an open problem asked by Golle et al. at ACNS 2004. Furthermore, the proposed scheme is extended to the dynamic group setting. Security analysis of our constructions is given in the paper.
Resumo:
Vehicular Ad-hoc Networks (VANETs) can make roads safer, cleaner, and smarter. It can offer a wide range of services, which can be safety and non-safety related. Many safety-related VANETs applications are real-time and mission critical, which would require strict guarantee of security and reliability. Even non-safety related multimedia applications, which will play an important role in the future, will require security support. Lack of such security and privacy in VANETs is one of the key hindrances to the wide spread implementations of it. An insecure and unreliable VANET can be more dangerous than the system without VANET support. So it is essential to make sure that “life-critical safety” information is secure enough to rely on. Securing the VANETs along with appropriate protection of the privacy drivers or vehicle owners is a very challenging task. In this work we summarize the attacks, corresponding security requirements and challenges in VANETs. We also present the most popular generic security policies which are based on prevention as well detection methods. Many VANETs applications require system-wide security support rather than individual layer from the VANETs’ protocol stack. In this work we will review the existing works in the perspective of holistic approach of security. Finally, we will provide some possible future directions to achieve system-wide security as well as privacy-friendly security in VANETs.