985 resultados para cytotoxin-associated gene A
Resumo:
The growth of breast cancer is regulated by hormones and growth factors. Recently, aberrant fibroblast growth factor (FGF) signalling has been strongly implicated in promoting the progression of breast cancer and is thought to have a role in the development of endocrine resistant disease. FGFs mediate their auto- and paracrine signals through binding to FGF receptors 1-4 (FGFR1-4) and their isoforms. Specific targets of FGFs in breast cancer cells and the differential role of FGFRs, however, are poorly described. FGF-8 is expressed at elevated levels in breast cancer, and it has been shown to act as an angiogenic, growth promoting factor in experimental models of breast cancer. Furthermore, it plays an important role in mediating androgen effects in prostate cancer and in some breast cancer cell lines. We aimed to study testosterone (Te) and FGF-8 regulated genes in Shionogi 115 (S115) breast cancer cells, characterise FGF-8 activated intracellular signalling pathways and clarify the role of FGFR1, -2 and -3 in these cells. Thrombospondin-1 (TSP-1), an endogenous inhibitor of angiogenesis, was recognised as a Te and FGF-8 regulated gene. Te repression of TSP-1 was androgen receptor (AR)-dependent. It required de novo protein synthesis, but it was independent of FGF-8 expression. FGF-8, in turn, downregulated TSP-1 transcription by activating the ERK and PI3K pathways, and the effect could be reversed by specific kinase inhibitors. Differential FGFR1-3 action was studied by silencing each receptor by shRNA expression in S115 cells. FGFR1 expression was a prerequisite for the growth of S115 tumours, whereas FGFR2 expression alone was not able to promote tumour growth. High FGFR1 expression led to a growth advantage that was associated with strong ERK activation, increased angiogenesis and reduced apoptosis, and all of these effects could be reversed by an FGFR inhibitor. Taken together, the results of this thesis show that FGF-8 and FGFRs contribute strongly to the regulation of the growth and angiogenesis of experimental breast cancer and support the evidence for FGF-FGFR signalling as one of the major players in breast cancers.
Resumo:
PURPOSE: To investigate the association between polymorphisms in genes that encode enzymes involved in folate- and vitamin B12-dependent homocysteine metabolism and recurrent spontaneous abortion (RSA).METHODS: We investigated the C677T and A1298C polymorphisms of the methylenetetrahydrofalate reductase gene (MTHFR), the A2756G polymorphism of the methionine synthase gene (MS) and the 844ins68 insertion of the cystathionine beta synthetase gene (CBS). The PCR technique followed by RFLP was used to assess the polymorphisms; the serum levels of homocysteine, vitamin B12 and folate were investigated by chemiluminescence. The EPI Info Software version 6.04 was used for statistical analysis. Parametric variables were compared by Student's t-test and nonparametric variables by the Wilcoxon rank sum test.RESULTS: The frequencies of gene polymorphisms in 89 women with a history of idiopathic recurrent miscarriage and 150 controls were 19.1 and 19.6% for the C677T, insertion, 20.8 and 26% for the A1298C insertion, 14.2 and 21.9% for the A2756G insertion, and 16.4 and 18% for the 844ins68 insertion, respectively. There were no significant differences between case and control groups in any of the gene polymorphisms investigated. However, the frequency of the 844ins68 insertion in the CBS gene was higher among women with a history of loss during the third trimester of pregnancy (p=0.003). Serum homocysteine, vitamin B12 and folate levels id not differ between the polymorphisms studied in the case and control groups. However, linear regression analysis showed a dependence of serum folate levels on the maintenance of tHcy levels.CONCLUSION: The investigated gene polymorphisms and serum homocysteine, vitamin B12 and folate levels were not associated with idiopathic recurrent miscarriage in the present study. Further investigations are needed in order to confirm the role of the CBS 844ins68 insertion in recurrent miscarriage.
Resumo:
The objectives were to determine the prevalence of fibrinonecrotic enteritis (FNE) on a farrow-to-finish farm of 1,000 sows, to categorize the pathological changes, and to to investigate the lesion associated agents Isospora suis and Clostridium perfringens. Causes of preweaning mortality (PWM) were classified into 8 categories including FNE. Obtained data were evaluated for statistical significance by adjusted Chi-square analysis. Samples of FNE were taken for complementary studies including a PCR technique for genotyping toxin genes of Clostridium perfringens from gut samples fixed in 10% neutral formalin. From 3,153 piglets examined, less than 1% was classified as FNE. FNE prevalence increased progressively from the first to the third week, the last differing statistically from the others. Eighty percent of gut samples with FNE lesions were positive to Isospora suis, when examined by PCR from 9 severe FNE lesions detected 7 positive samples only for a toxin gene, characteristic of C. perfringens type-A.
Resumo:
The virulence mechanisms of avian pathogenic Escherichia coli (APEC) have been continually studied and are believed to be multi-factorial. Certain properties are primarily associated with virulent samples and have been identified in avian isolates. In this study a total of 61 E. coli, isolates from chicken flocks with respiratory symptomatology, were probed by Polimerase Chain Reation (PCR) for the presence of genes responsible for the adhesion capacity, P fimbria (papC) e F11 fimbria (felA), colicin production (cvaC), aerobactin presence (iutA), serum resistance (iss), temperature-sensitive hemagglutinin (tsh), and presence of K1 and K5 capsular antigens (kpsII). The iss gene was detected in 73,8%, tsh in 55,7%, iutA in 45,9%, felA in 39,3%, papC in 24,3%, cvaC in 23% and kpsII in18%.
Resumo:
Scrapie is a transmissible spongiform encephalopathy of sheeps and goats, associated with the deposition of a isoform of the prion protein (PrPsc). This isoform presents an altered conformation that leads to aggregation in the host's central nervous and lymphoreticular systems. Predisposition to the prion agent infection can be influenced by specific genotypes related to mutations in amino acids of the PrPsc gene. The most characterized mutations occur at codons 136, 154 and 171, with genotypes VRQ being the most susceptible and ARR the most resistant. In this study we have analyzed polymorphisms in 15 different codons of the PrPsc gene in sheeps from a Suffolk herd from Brazil affected by an outbreak of classical scrapie. Amplicons from the PrPsc gene, encompassing the most relevant altered codons in the protein, were sequenced in order to determine each animal's genotype. We have found polymorphisms at 3 of the 15 analyzed codons (136, 143 and 171). The most variable codon was 171, where all described alleles were identified. A rare polymorphism was found at the 143 codon in 4% of the samples analyzed, which has been described as increasing scrapie resistance in otherwise susceptible animals. No other polymorphisms were detected in the remaining 12 analyzed codons, all of them corresponding to the wild-type prion protein. Regarding the risk degree of developing scrapie, most of the animals (96%) had genotypes corresponding to risk groups 1 to 3 (very low to moderate), with only 4% in the higher risks group. Our data is discussed in relation to preventive measures involving genotyping and positive selection to control the disease.
Resumo:
The current systems of breeding poultry, based on high population density, increase the risk of spreading pathogens, especially those causing respiratory diseases and those that have more than one host. Fowl Cholera (FC) is one such pathogen, and even though it represents one of several avian diseases that should be considered in the differential diagnosis of notifiable diseases that present with sudden death, the pathogenesis and virulence factors involved in FC are still poorly understood. The objective of this study was to investigate twelve genes related to virulence in 25 samples of Pasteurella multocida isolated from FC cases in the southern region of Brazil through the development of multiplex PCR protocols. The protocols developed were capable of detecting all of the proposed genes. The ompH, oma87, sodC, hgbA, hgbB, exBD-tonB and nanB genes were present in 100% of the samples (25/25), the sodA and nanH genes were present in 96% (24/25), ptfA was present in 92% (23/25), and pfhA was present in 60% (15/25). Gene toxA was not identified in any of the samples studied (0/25). Five different genetic profiles were obtained, of which P1 (negative to toxA) was the most common. We concluded that the multiplex-PCR protocols could be useful tools for rapid and simultaneous detection of virulence genes. Despite the high frequency of the analyzed genes and the fact that all samples belonged to the same subspecies of P. multocida, five genetic profiles were observed, which should be confirmed in a study with a larger number of samples.
Resumo:
Salmonella spp. are considered the main agents of foodborne disease and Salmonella Enteritidis is one of the most frequently isolated serovars worldwide. The virulence of Salmonella spp. and their interaction with the host are complex processes involving virulence factors to overcome host defenses. The purpose of this study was to detect virulence genes in S. Enteritidis isolates from poultry in the South of Brazil. PCR-based assays were developed in order to detect nine genes (lpfA, agfA, sefA, invA, hilA, avrA, sopE, sivH and spvC) associated with the virulence in eighty-four isolates of S. Enteritidis isolated from poultry. The invA, hilA, sivH, sefA and avrA genes were present in 100% of the isolates; lpfA and sopE were present in 99%; agfA was present in 96%; and the spvC gene was present in 92%. It was possible to characterize the isolates with four different genetic profiles (P1, P2, P3 and P4), as it follows: P1, positive for all genes; P2, negative only for spvC; P3, negative for agfA; and P4, negative for lpfA, spvC and sopE. The most prevalent profile was P1, which was present in 88% of the isolates. Although all isolates belong to the same serovar, it was possible to observe variations in the presence of these virulence-associated genes between different isolates. The characterization of the mechanisms of virulence circulating in the population of Salmonella Enteritidis is important for a better understanding of its biology and pathogenicity. The frequency of these genes and the establishment of genetic profiles can be used to determine patterns of virulence. These patterns, associated with in vivo studies, may help develop tools to predict the ability of virulence of different strains.
Resumo:
Avian pathogenic Escherichia coli (APEC) infections are responsible for significant losses in the poultry industry worldwide. A zoonotic risk has been attributed to APEC strains because they present similarities to extraintestinal pathogenic E. coli (ExPEC) associated with illness in humans, mainly urinary tract infections and neonatal meningitis. Here, we present in silico analyses with pathogenic E. coli genome sequences, including recently available APEC genomes. The phylogenetic tree, based on multi-locus sequence typing (MLST) of seven housekeeping genes, revealed high diversity in the allelic composition. Nevertheless, despite this diversity, the phylogenetic tree was able to cluster the different pathotypes together. An in silico virulence gene profile was also determined for each of these strains, through the presence or absence of 83 well-known virulence genes/traits described in pathogenic E. coli strains. The MLST phylogeny and the virulence gene profiles demonstrated a certain genetic similarity between Brazilian APEC strains, APEC isolated in the United States, UPEC (uropathogenic E. coli) and diarrheagenic strains isolated from humans. This correlation corroborates and reinforces the zoonotic potential hypothesis proposed to APEC.
Resumo:
Bean golden mosaic is the most important viral disease of the bean crop (Phaseolus vulgaris L.) in Latin America. The genetics of resistance to a Brazilian strain of bean golden mosaic virus (BGMV), was studied in a 4 x 4 diallel cross without reciprocals, among the parental genotypes DOR 303, EMGOPA 201 Ouro, Carnaval, and Redlands Greenleaf C. Seedlings of the four parents, six F1 hybrids, 12 backcrosses, and F2 generations for each combination were inoculated on the eighth day after sowing by exposure to a viruliferous whitefly (Bemisia tabaci Genn.) population for 24 h, in a glasshouse, prior to transplantation to field conditions. The full set of two parents, F1, F2 and respective backcrosses for each combination was considered to be a family. Data were recorded and analyzed for foliar yellowing, plant dwarfing, and pod malformation, using a randomized block design, with two replications. Weighted generation mean analysis was performed for each of the six families. An additive gene action model was significant for the three characteristics evaluated. On the other hand, non-additive gene action had greater absolute value in most cases. Resistance to foliar yellowing conferred by genes from DRO 303 was highly heritable and was expressed equally well in the different genetic backgrounds evaluated. Such resistance may be oligogenic. Broad- and narrow-sense heritabilities were relatively high for all response traits. The three traits studied were all positively correlated, indicating that they can be simultaneously selected for enhancement. The highest correlation coefficient was obtained for dwarfing x pod malformation.
Resumo:
When the first group of DNA puffs is active in the salivary gland regions S1 and S3 of Bradysia hygida larvae, there is a large increase in the production and secretion of new salivary proteins demonstrable by [3H]-Leu incorporation. The present study shows that protein separation by SDS-PAGE and detection by fluorography demonstrated that these polypeptides range in molecular mass from about 23 to 100 kDa. Furthermore, these proteins were synthesized mainly in the S1 and S3 salivary gland regions where the DNA puffs C7, C5, C4 and B10 are conspicuous, while in the S2 region protein synthesis was very low. Others have shown that the extent of amplification for DNA sequences that code for mRNA in the DNA puffs C4 and B10 was about 22 and 10 times, respectively. The present data for this group of DNA puffs are consistent with the proposition that gene amplification is necessary to provide some cells with additional gene copies for the production of massive amounts of proteins within a short period of time (Spradling AC and Mahowald AP (1980) Proceedings of the National Academy of Sciences, USA, 77: 1096-1100).
Resumo:
The human immune system is constantly interacting with the surrounding stimuli and microorganisms. However, when directed against self or harmless antigens, these vital defense mechanisms can cause great damage. In addition, the understanding the underlying mechanism of several human diseases caused by aberrant immune cell functions, for instance type 1 diabetes and allergies, remains far from being complete. In this Ph.D. study these questions were addressed using genome-wide transcriptomic analyses. Asthma and allergies are characterized by a hyperactive response of the T helper 2 (Th2) immune cells. In this study, the target genes of the STAT6 transcription factor in naïve human T cells were identified with RNAi for the first time. STAT6 was shown to act as a central activator of the genes expression upon IL-4 signaling, with both direct and indirect effects on Th2 cell transcriptome. The core transcription factor network induced by IL-4 was identified from a kinetic analysis of the transcriptome. Type 1 diabetes is an autoimmune disease influenced by both the genetic susceptibility of an individual and the disease-triggering environmental factors. To improve understanding of the autoimmune processes driving pathogenesis in the prediabetic phase in humans, a unique series of prospective whole-blood RNA samples collected from HLA-susceptible children in the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) study was studied. Changes in different timewindows of the pathogenesis process were identified, and especially the type 1 interferon response was activated early and throughout the preclinical T1D. The hygiene hypothesis states that allergic diseases, and lately also autoimmune diseases, could be prevented by infections and other microbial contacts acquired in early childhood, or even prenatally. To study the effects of the standard of hygiene on the development of neonatal immune system, cord blood samples from children born in Finland (high standard of living), Estonia (rapid economic growth) and Russian Karelia (low standard of living) were compared. Children born in Russian Karelia deviated from Finnish and Estonian children in many aspects of the neonatal immune system, which was developmentally more mature in Karelia, resembling that of older infants. The results of this thesis offer significant new information on the regulatory networks associated with immune-mediated diseases in human. The results will facilitate understanding and further research on the role of the identified target genes and mechanisms driving the allergic inflammation and type 1 diabetes, hopefully leading to a new era of drug development.
Resumo:
Gene therapy for hypertension is needed for the next generation of antihypertensive drugs. Current drugs, although effective, have poor compliance, are expensive and short-lasting (hours or one day). Gene therapy offers a way to produce long-lasting antihypertensive effects (weeks, months or years). We are currently using two strategies: a) antisense oligodeoxynucleotides (AS-ODN) and b) antisense DNA delivered in viral vectors to inhibit genes associated with vasoconstrictive properties. It is not necessary to know all the genes involved in hypertension, since many years of experience with drugs show which genes need to be controlled. AS-ODN are short, single-stranded DNA that can be injected in naked form or in liposomes. AS-ODN, targeted to angiotensin type 1 receptors (AT1-R), angiotensinogen (AGT), angiotensin converting enzyme, and ß1-adrenergic receptors effectively reduce hypertension in rat models (SHR, 2K-1C) and cold-induced hypertension. A single dose is effective up to one month when delivered with liposomes. No side effects or toxic effects have been detected, and repeated injections can be given. For the vector, adeno-associated virus (AAV) is used with a construct to include a CMV promoter, antisense DNA to AGT or AT1-R and a reporter gene. Results in SHR demonstrate reduction and slowing of development of hypertension, with a single dose administration. Left ventricular hypertrophy is also reduced by AAV-AGT-AS treatment. Double transgenic mice (human renin plus human AGT) with high angiotensin II causing high blood pressure, treated with AAV-AT1-R-AS, show a normalization of blood pressure for over six months with a single injection of vector. We conclude that ODNs will probably be developed first because they can be treated like drugs for the treatment of hypertension with long-term effects. Viral vector delivery needs more engineering to be certain of its safety, but one day may be used for a very prolonged control of blood pressure.
Resumo:
Familial hypercholesterolemia (FH) is a metabolic disorder inherited as an autosomal dominant trait characterized by an increased plasma low-density lipoprotein (LDL) level. The disease is caused by several different mutations in the LDL receptor gene. Although early identification of individuals carrying the defective gene could be useful in reducing the risk of atherosclerosis and myocardial infarction, the techniques available for determining the number of the functional LDL receptor molecules are difficult to carry out and expensive. Polymorphisms associated with this gene may be used for unequivocal diagnosis of FH in several populations. The aim of our study was to evaluate the genotype distribution and relative allele frequencies of three polymorphisms of the LDL receptor gene, HincII1773 (exon 12), AvaII (exon 13) and PvuII (intron 15), in 50 unrelated Brazilian individuals with a diagnosis of heterozygous FH and in 130 normolipidemic controls. Genomic DNA was extracted from blood leukocytes by a modified salting-out method. The polymorphisms were detected by PCR-RFLP. The FH subjects showed a higher frequency of A+A+ (AvaII), H+H+ (HincII1773) and P1P1 (PvuII) homozygous genotypes when compared to the control group (P<0.05). In addition, FH probands presented a high frequency of A+ (0.58), H+ (0.61) and P1 (0.78) alleles when compared to normolipidemic individuals (0.45, 0.45 and 0.64, respectively). The strong association observed between these alleles and FH suggests that AvaII, HincII1773 and PvuII polymorphisms could be useful to monitor the inheritance of FH in Brazilian families.
Resumo:
Tropical spastic paraparesis/human T-cell leukemia type I-associated myelopathy (TSP/HAM) is caused by a human T-cell leukemia virus type I (HTLV-I) after a long incubation period. TSP/HAM is characterized by a chronic progressive paraparesis with sphincter disturbances, no/mild sensory loss, the absence of spinal cord compression and seropositivity for HTLV-I antibodies. The pathogenesis of this entity is not completely known and involves a multivariable phenomenon of immune system activation against the presence of HTLV-I antigens, leading to an inflammatory process and demyelination, mainly in the thoracic spinal cord. The current hypothesis about the pathogenesis of TSP/HAM is: 1) presence of HTLV-I antigens in the lumbar spinal cord, noted by an increased DNA HTLV-I load; 2) CTL either with their lytic functions or release/production of soluble factors, such as CC-chemokines, cytokines, and adhesion molecules; 3) the presence of Tax gene expression that activates T-cell proliferation or induces an inflammatory process in the spinal cord; 4) the presence of B cells with neutralizing antibody production, or complement activation by an immune complex phenomenon, and 5) lower IL-2 and IFN-gamma production and increased IL-10, indicating drive to a cytokine type 2 pattern in the TSP/HAM subjects and the existence of a genetic background such as some HLA haplotypes. All of these factors should be implicated in TSP/HAM and further studies are necessary to investigate their role in the development of TSP/HAM.
Resumo:
The molecular basis for RHD pseudogene or RHDpsi is a 37-bp insertion in exon 4 of RHD. This insertion, found in two-thirds of D-negative Africans, appears to introduce a stop codon at position 210. The hybrid RHD-CE-Ds, where the 3' end of exon 3 and exons 4 to 8 are derived from RHCE, is associated with the VS+V- phenotype, and leads to a D-negative phenotype in people of African origin. We determined whether Brazilian blood donors of heterogeneous ethnic origin had RHDpsi and RHD-CE-Ds. DNA from 206 blood donors were tested for RHDpsi by a multiplex PCR that detects RHD, RHDpsi and the C and c alleles of RHCE. The RHD genotype was determined by comparison of size of amplified products associated with the RHD gene in both intron 4 and exon 10/3'-UTR. VS was determined by amplification of exon 5 of RHCE, and sequencing of PCR products was used to analyze C733G (Leu245Val). Twenty-two (11%) of the 206 D-negative Brazilians studied had the RHDpsi, 5 (2%) had the RHD-CE-Ds hybrid gene associated with the VS+V- phenotype, and 179 (87%) entirely lacked RHD. As expected, RHD was deleted in all the 50 individuals of Caucasian descent. Among the 156 individuals of African descent, 22 (14%) had inactive RHD and 3% had the RHD-CE-Ds hybrid gene. These data confirm that the inclusion of two different multiplex PCR for RHD is essential to test the D-negative Brazilian population in order to avoid false-positive typing of polytransfused patients and fetuses.