961 resultados para cytochrome P450 1A2
Resumo:
A total of 131 phlebotomine Algerian sandflies have been processed in the present study. They belong to the species Phlebotomus bergeroti, Phlebotomus alexandri, Phlebotomus sergenti, Phlebotomus chabaudi, Phlebotomus riouxi, Phlebotomus perniciosus, Phlebotomus longicuspis, Phlebotomus perfiliewi, Phlebotomus ariasi, Phlebotomus chadlii, Sergentomyia fallax, Sergentomyia minuta, Sergentomyia antennata, Sergentomyia schwetzi, Sergentomyia clydei, Sergentomyia christophersi and Grassomyia dreyfussi. They have been characterised by sequencing of a part of the cytochrome b (cyt b), t RNA serine and NADH1 on the one hand and of the cytochrome C oxidase I of the mitochondrial DNA (mtDNA) on the other hand. Our study highlights two sympatric populations within P. sergenti in the area of its type-locality and new haplotypes of P. perniciosus and P. longicuspis without recording the specimens called lcx previously found in North Africa. We tried to use a polymerase chain reaction-restriction fragment length polymorphism method based on a combined double digestion of each marker. These method is not interesting to identify sandflies all over the Mediterranean Basin.
Resumo:
Since 1984, Anopheles (Kerteszia) lepidotus has been considered a mosquito species that is involved in the transmission of malaria in Colombia, after having been incriminated as such with epidemiological evidence from a malaria outbreak in Cunday-Villarrica, Tolima. Subsequent morphological analyses of females captured in the same place and at the time of the outbreak showed that the species responsible for the transmission was not An. lepidotus, but rather Anopheles pholidotus. However, the associated morphological stages and DNA sequences of An. pholidotus from the foci of Cunday-Villarrica had not been analysed. Using samples that were caught recently from the outbreak region, the purpose of this study was to provide updated and additional information by analysing the morphology of female mosquitoes, the genitalia of male mosquitoes and fourth instar larvae of An. pholidotus, which was confirmed with DNA sequences of cytochrome oxidase I and rDNA internal transcribed spacer. A total of 1,596 adult females were collected in addition to 37 larval collections in bromeliads. Furthermore, 141 adult females, which were captured from the same area in the years 1981-1982, were analysed morphologically. Ninety-five DNA sequences were analysed for this study. Morphological and molecular analyses showed that the species present in this region corresponds to An. pholidotus. Given the absence of An. lepidotus, even in recent years, we consider that the species of mosquitoes that was previously incriminated as the malaria vector during the outbreak was indeed An. pholidotus, thus ending the controversy.
Resumo:
AIMS: To identify the molecular basis for a low CYP1A2 metabolic status, as determined by a caffeine phenotyping test, in a 71-year-old, nonsmoking, Caucasian woman who presented with very high clozapine concentrations despite being administered a standard dose of the drug. METHODS: The nucleotide sequence of the 7 exons, exon-intron boundaries and 5'-flanking region of the CYP1A2 gene was analysed by direct sequencing. RESULTS: Only one heterozygous point mutation was identified in the donor splice site of intron 6 (3534G > A) of CYP1A2. This mutation could cause abnormal RNA splicing and therefore lead to a truncated nonfunctional enzyme. No other carrier of this mutation was identified in a population of 100 unrelated healthy Caucasians. CONCLUSIONS: This is the first report of a splice-site mutation affecting the CYP1A2 gene. This polymorphism is a likely explanation for the low CYP1A2 activity associated with high clozapine concentrations in this patient.
Resumo:
The role played by different mammal species in the maintenance of Trypanosoma cruzi is not constant and varies in time and place. This study aimed to characterise the importance of domestic, wild and peridomestic hosts in the transmission of T. cruzi in Tauá, state of Ceará, Caatinga area, Brazil, with an emphasis on those environments colonised by Triatoma brasiliensis. Direct parasitological examinations were performed on insects and mammals, serologic tests were performed on household and outdoor mammals and multiplex polymerase chain reaction was used on wild mammals. Cytochrome b was used as a food source for wild insects. The serum prevalence in dogs was 38% (20/53), while in pigs it was 6% (2/34). The percentages of the most abundantly infected wild animals were as follows: Thrichomys laurentius 74% (83/112) and Kerodon rupestris 10% (11/112). Of the 749 triatomines collected in the household research, 49.3% (369/749) were positive for T. brasiliensis, while 6.8% were infected with T. cruzi (25/369). In captured animals, T. brasiliensis shares a natural environment with T. laurentius, K. rupestris, Didelphis albiventris, Monodelphis domestica, Galea spixii, Wiedomys pyrrhorhinos, Conepatus semistriatus and Mus musculus. In animals identified via their food source, T. brasiliensis shares a natural environment with G. spixii, K. rupestris, Capra hircus, Gallus gallus, Tropidurus oreadicus and Tupinambis merianae. The high prevalence of T. cruzi in household and peridomiciliar animals reinforces the narrow relationship between the enzootic cycle and humans in environments with T. brasiliensis and characterises it as ubiquitous.
Resumo:
Malaria in La Guajira, the most northern state of Colombia, shows two different epidemiological patterns. Malaria is endemic in the municipality of Dibulla whereas in Riohacha it is characterised by sporadic outbreaks. This study aimed to establish whether differences in transmission patterns could be attributed to different vector species. The most abundant adult female species were Anopheles aquasalis, exclusive to Riohacha, and Anopheles darlingi, restricted to Dibulla. Anopheles mosquitoes were identified using morphology and the molecular markers internal transcribed spacer 2 and cytochrome c oxidase I. All specimens (n = 1,393) were tested by ELISA to determine natural infection rates with Plasmodium falciparum and Plasmodium vivax. An. darlingi was positive for P. vivax 210, with an infection rate of 0.355% and an entomological inoculation rate of 15.87 infective bites/person/year. Anopheles albimanus larvae were the most common species in Riohacha, found in temporary swamps; in contrast, in Dibulla An. darlingi were detected mainly in permanent streams. Distinctive species composition and larval habitats in each municipality may explain the differences in Plasmodium transmission and suggest different local strategies should be used for vector control.
Resumo:
Angiostrongylus cantonensis is the etiologic agent of eosinophilic meningoencephalitis in humans. Cases have been recorded in many parts of the world, including Brazil. The aim of this study was to compare the differences in the biology and morphology of two different Brazilian haplotypes of A. : ac8 and ac9. A significantly larger number of L1 larvae eliminated in the faeces of rodents at the beginning of the patent period was observed for ac9 haplotype and compared to the total of L1 larvae eliminated, there was a significant difference between the two haplotypes. The ac9 haplotype showed a significant difference in the proportion of female and male specimens (0.6:1), but the same was not observed for ac8 (1.2:1). The morphometric analysis showed that male and female specimens isolated from ac8 haplotype were significantly larger with respect to body length, oesophagus length, spicule length (male) and distance from the anus to the rear end (female) compared to specimens from ac9. The morphological analysis by light microscopy showed little variation in the level of bifurcations at the lateral rays in the right lobe of the copulatory bursa between the two haplotypes. The biological, morphological and morphometric variations observed between the two haplotypes agree with the observed variation at the molecular level using the cytochrome oxidase subunit I marker and reinforce the possible influence of geographical isolation on the development of these haplotypes.
Resumo:
Type 2 diabetes has been related to a decrease of mitochondrial DNA (mtDNA) content. In this study, we show increased expression of the peroxisome proliferator-activated receptor-alpha (PPARalpha) and its target genes involved in fatty acid metabolism in skeletal muscle of Zucker Diabetic Fatty (ZDF) (fa/fa) rats. In contrast, the mRNA levels of genes involved in glucose transport and utilization (GLUT4 and phosphofructokinase) were decreased, whereas the expression of pyruvate dehydrogenase kinase 4 (PDK-4), which suppresses glucose oxidation, was increased. The shift from glucose to fatty acids as the source of energy in skeletal muscle of ZDF rats was accompanied by a reduction of subunit 1 of complex I (NADH dehydrogenase subunit 1, ND1) and subunit II of complex IV (cytochrome c oxidase II, COII), two genes of the electronic transport chain encoded by mtDNA. The transcript levels of PPARgamma Coactivator 1 (PGC-1) showed a significant reduction. Treatment with troglitazone (30 mg/kg/day) for 15 days reduced insulin values and reversed the increase in PDK-4 mRNA levels, suggesting improved insulin sensitivity. In addition, troglitazone treatment restored ND1 and PGC-1 expression in skeletal muscle. These results suggest that troglitazone may avoid mitochondrial metabolic derangement during the development of diabetes mellitus 2 in skeletal muscle.
Resumo:
Triatoma sordida is a species that transmits Trypanosoma cruzi to humans. In Brazil, T. sordida currently deserves special attention because of its wide distribution, tendency to invade domestic environments and vectorial competence. For the planning and execution of control protocols to be effective against Triatominae, they must consider its population structure. In this context, this study aimed to characterise the genetic variability of T. sordida populations collected in areas with persistent infestations from Minas Gerais, Brazil. Levels of genetic variation and population structure were determined in peridomestic T. sordida by sequencing a polymorphic region of the mitochondrial cytochrome b gene. Low nucleotide and haplotype diversity were observed for all 14 sampled areas; π values ranged from 0.002-0.006. Most obtained haplotypes occurred at low frequencies, and some were exclusive to only one of the studied populations. Interpopulation genetic diversity analysis revealed strong genetic structuring. Furthermore, the genetic variability of Brazilian populations is small compared to that of Argentinean and Bolivian specimens. The possible factors related to the reduced genetic variability and strong genetic structuring obtained for studied populations are discussed in this paper.
Resumo:
Hypertension is the first single modifiable cause of disease burden worldwide. Genes encoding proteins that are involved in the metabolism (CYP3A5) and transport (ABCB1) of drugs and hormones might contribute to blood pressure control in humans. Indeed, recent data have suggested that CYP3A5 and ABCB1 gene polymorphisms are associated with blood pressure in the rat as well as in humans. Interestingly, the effects of these genes on blood pressure appear to be modified by dietary salt intake. This review summarizes what is known regarding the relationships of the ABCB1 and CYP3A5 genes with blood pressure, and discusses the potential underlying mechanisms of the association. If the role of these genes in blood pressure control is confirmed in other populations and other ethnic groups, these findings would point toward a new pathway for blood pressure control in humans.
Resumo:
PURPOSE: This study investigates the effects of triamcinolone acetonide (TA) on retinal endothelial cells in vitro and explores the potential vascular toxic effect of TA injected into the vitreous cavity of rats in vivo. METHODS: Subconfluent endothelial cells were treated with either 0.1 mg/ml or 1 mg/ml TA in 1% ethanol. Control cells were either untreated or exposed to 1% ethanol. Cell viability was evaluated at 24 h, 72 h, and five days using the tetrazolium 3-(4,5-dimethylthiazol-2-yl)-2,5 phenyltetrazolium bromide test (MTT) and lactate dehydrogenase (LDH) assays. Cell proliferation was evaluated by 5-bromo-2-deoxyuridine (BrdU) test. Apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling assay (TUNEL assay), annexin-binding, and caspase 3 activation. Caspase-independent cell deaths were investigated by immunohistochemistry using antibodies against apoptosis inducing factor (AIF), cytochrome C, microtubule-associated protein (MAP)-light chain 3 (MAP-LC3), and Leukocyte Elastase Inhibitor/Leukocyte Elastase Inhibitor-derived DNase II (LEI/L-DNase II). In vivo, semithin and ultrathin structure analysis and vascular casts were performed to examine TA-induced changes of the choroidal vasculature. In addition, outer segments phagocytosis assay on primary retinal pigment epithelium (RPE) cells was performed to assess cyclooxygenase (COX-2) and vascular endothelial growth factor (VEGF) mRNAs upregulation with or without TA. RESULTS: The inhibitory effect of TA on cell proliferation could not explain the significant reduction in cell viability. Indeed, TA induced a time-dependent reduction of bovine retinal endothelial cells viability. Annexin-binding positive cells were observed. Cytochrome C was not released from mitochondria. L-DNase II was found translocated to the nucleus, meaning that LEI was changed into L-DNase II. AIF was found nuclearized in some cells. LC3 labeling showed the absence of autophagic vesicles. No autophagy or caspase dependent apoptosis was identified. At 1 mg/ml TA induced necrosis while exposure to lower concentrations for 3 to 5 days induced caspase independent apoptosis involving AIF and LEI/L-DNase II. In vivo, semithin and ultrathin structure analysis and vascular casts revealed that TA mostly affected the choroidal vasculature with a reduction of choroidal thickness and increased the avascular areas of the choriocapillaries. Experiments performed on primary RPE cells showed that TA downregulates the basal expression of COX-2 and VEGF and inhibits the outer segments (OS)-dependent COX-2 induction but not the OS-dependent VEGF induction. CONCLUSIONS: This study demonstrates for the first time that glucocorticoids exert direct toxic effect on endothelial cells through caspase-independent cell death mechanisms. The choroidal changes observed after TA intravitreous injection may have important implications regarding the safety profile of TA use in human eyes.
Resumo:
This study was conducted to identify enzyme systems eventually catalysing a local cerebral metabolism of citalopram, a widely used antidepressant of the selective serotonin reuptake inhibitor type. The metabolism of citalopram, of its enantiomers and demethylated metabolites was investigated in rat brain microsomes and in rat and human brain mitochondria. No cytochrome P-450 mediated transformation was observed in rat brain. By analysing H2O2 formation, monoamine oxidase A activity in rat brain mitochondria could be measured. In rat whole brain and in human frontal cortex, putamen, cerebellum and white matter of five brains monoamine oxidase activity was determined by the stereoselective measurement of the production of citalopram propionate. All substrates were metabolised by both forms of MAO, except in rat brain, where monoamine oxidase B activity could not be detected. Apparent Km and Vmax of S-citalopram biotransformation in human frontal cortex by monoamine oxidase B were found to be 266 microM and 6.0 pmol min(-1) mg(-1) protein and by monoamine oxidase A 856 microM and 6.4 pmol min(-1) mg(-1) protein, respectively. These Km values are in the same range as those for serotonin and dopamine metabolism by monoamine oxidases. Thus, the biotransformation of citalopram in the rat and human brain occurs mainly through monoamine oxidases and not, as in the liver, through cytochrome P-450.
Resumo:
For a better understanding of the complex coevolutionary processes between hosts and parasites, accurate identification of the actors involved in the interaction is of fundamental importance. Blood parasites of the Order Haemosporidia, responsible for malaria, have become the focus of a broad range of studies in evolutionary biology. Interestingly, molecular-based studies on avian malaria have revealed much higher species diversity than previously inferred with morphology. Meanwhile, studies on bat haemosporidian have been largely neglected. In Europe, only one genus (Polychromophilus) and two species have been morphologically described. To evaluate the presence of potential cryptic species and parasite prevalence, we undertook a molecular characterization of Polychromophilus in temperate zone bats. We used a nested-PCR approach on the cytochrome b mitochondrial gene to detect the presence of parasites in 237 bats belonging to four different species and in the dipteran bat fly Nycteribia kolenatii, previously described as being the vector of Polychromophilus. Polychromophilus murinus was found in the four bat species and in the insect vector with prevalence ranging from 4% for Myotis myotis to 51% for M. daubentoni. By sequencing 682 bp, we then investigated the phylogenetic relationships of Polychromophilus to other published malarial lineages. Seven haplotypes were found, all very closely related, suggesting the presence of a single species in our samples. These haplotypes formed a well-defined clade together with Haemosporidia of tropical bats, revealing a worldwide distribution of this parasite mostly neglected by malarial studies since the 1980s.
Resumo:
Imatinib (Glivec®) has transformed the treatment and short-term prognosis of chronic myeloid leukemia (CML) and gastrointestinal stromal tumor (GIST). However, the treatment must be taken indefinitely, it is not devoid of inconvenience and toxicity. Moreover, resistance or escape from disease control occurs in a significant number of patients. Imatinib is a substrate of the cytochromes P450 CYP3A4/5 and of the multidrug transporter P-glycoprotein (product of the MDR1 gene). Considering the large inter-individual differences in the expression and function of those systems, the disposition and clinical activity of imatinib can be expected to vary widely among patients, calling for dosage individualization. The aim of this exploratory study was to determine the average pharmacokinetic parameters characterizing the disposition of imatinib in the target population, to assess their inter-individual variability, and to identify influential factors affecting them. A total of 321 plasma concentrations, taken at various sampling times after the latest dose, were measured in 59 patients receiving Glivec at diverse regimens, using a validated HPLC-UV method developed for this study. The results were analyzed by non-linear mixed effect modeling (NONMEM). A one-compartment model with first-order absorption appeared appropriate to describe the data, with an average apparent clearance of 12.4 l/h, a distribution volume of 268 l and an absorption constant of 0.47 h-1. The clearance was affected by body weight, age and sex. No influences of interacting drugs were found. DNA samples were used for pharmacogenetic explorations. At present, only the MDR1 polymorphism has been assessed and seems to affect the pharmacokinetic parameters of imatinib. Large inter-individual variability remained unexplained by the demographic covariates considered, both on clearance (40 %) and distribution volume (71 %). Together with intra-patient variability (34 %), this translates into an 8-fold width of the 90 %-prediction interval of plasma concentrations expected under a fixed dosing regimen. This is a strong argument to further investigate the possible usefulness of a therapeutic drug monitoring program for imatinib. It may help to individualize the dosing regimen before overt disease progression or observation of treatment toxicity, thus improving both the long-term therapeutic effectiveness and tolerability of this drug.
Resumo:
Most of oral targeted therapies are tyrosine kinase inhibitors (TKIs). Oral administration generates a complex step in the pharmacokinetics (PK) of these drugs. Inter-individual PK variability is often large and variability observed in response is influenced not only by the genetic heterogeneity of drug targets, but also by the pharmacogenetic background of the patient (e.g. cytochome P450 and ABC transporter polymorphisms), patient characteristics such as adherence to treatment and environmental factors (drug-drug interactions). Retrospective studies have shown that targeted drug exposure, reflected in the area under the plasma concentration-time curve (AUC) correlates with treatment response (efficacy/toxicity) in various cancers. Nevertheless levels of evidence for therapeutic drug monitoring (TDM) are however heterogeneous among these agents and TDM is still uncommon for the majority of them. Evidence for imatinib currently exists, others are emerging for compounds including nilotinib, dasatinib, erlotinib, sunitinib, sorafenib and mammalian target of rapamycin (mTOR) inhibitors. Applications for TDM during oral targeted therapies may best be reserved for particular situations including lack of therapeutic response, severe or unexpected toxicities, anticipated drug-drug interactions and/or concerns over adherence treatment. Interpatient PK variability observed with monoclonal antibodies (mAbs) is comparable or slightly lower to that observed with TKIs. There are still few data with these agents in favour of TDM approaches, even if data showed encouraging results with rituximab, cetuximab and bevacizumab. At this time, TDM of mAbs is not yet supported by scientific evidence. Considerable effort should be made for targeted therapies to better define concentration-effect relationships and to perform comparative randomised trials of classic dosing versus pharmacokinetically-guided adaptive dosing.
Resumo:
The marsh frog (Pelophylax ridibundus) has been introduced in many places of Central and Western Europe due to commercial trades with Eastern Europe, and is rapidly replacing the native pool frog (P. lessonae). A large number of Pelophylax species are distributed in Eastern Europe and the strong phenotypic similarity between these species is rendering their identification hazardous. Consequently, alien populations of Pelophylax might not strictly be composed of P. ridibundus as previously suspected. In the present study, we analyzed the cytochrome b and NADH dehydrogenase subunit 3 genes of introduced and native Pelophylax from Switzerland (299 individuals), in order to properly identify the source populations of the invaders and the genetic status of the native species. Our study highlighted the occurrence of several genetic lineages of invasive frogs in western Switzerland. Unexpectedly, we also showed that several populations of the native pool frog (P. lessonae) cluster with the Italian pool frog P. bergeri from central Italy (considered by some authors as a subspecies of P. lessonae) Hence, these populations are probably also the result of introductions, meaning that the number of native P. lessonae populations is less important than expected in Switzerland. These findings have important implications concerning the conservation of the endemic pool frog populations, as the presence of multiple alien species could strongly affect their long-term subsistence.