984 resultados para cubic phase sequencs
Resumo:
A binary aqueous suspension of large (L) and small (S) nearly-hard-sphere colloidal polystyrene spheres is shown to segregate spontaneously into L-rich and S-rich regions for suitable choices of volume fraction and size ratio. This is the first observation of such purely entropic phase separation of chemically identical species in which at least one component remains fluid. Simple theoretical arguments are presented to make this effect plausible.
Resumo:
The perovskite structure in Pb(Zn1/3Nb2/3)O3 can be stabilized by the addition of Pb(Ni1/3Nb2/3)O3 and PbTiO3.Pb(Ni1/3Nb2/3)O3 assists in lowering the sintering temperature and shifting the Curie temperature of ceramics while PbTiO3 helps to optimize the dielectric properties. The phase stability and dielectric properties of several compositions in the Pb(Zn1/3Nb2/3)O3-Pb(Ni1/3Nb2/3)O3-PbTiO3 ternary relaxor ferroelectric system were investigated for possible capacitor applications. The effect of calcining and sintering temperature on the stability of perovskite phase in PZN rich compositions was studied extensively as a function of composition. The boundary line separating perovskite and mixed phases was determined for compositions near PZN. Several compositions can be sintered below 1050°C. The dielectric properties of compositions near the mixed phase boundary showed strong dependence on the percentage of pyrochlore phase. Compositions with a dielectric constant of 12.500 at room temperature have been identified which meet Z5T and Y5U specifications for dielectric constant and tan δ.
Resumo:
The solution- and melt-phase photochemistry of four trans-benzylidene-d,l-piperitones (1) has been investigated under a variety of conditions. The 1 undergo trans reversible cis isomerization to establish a quasi photostationary state. Further irradiation leads to 2 via oxidative ring closure. Conspicuously absent are dimers (obtained upon irradiation of the neat crystals) and the plausible Norrish Type II photoproducts, 3. Although 1c yields 2c, no evidence for the alternative cyclization route to 2a (requiring loss of HCl) has been observed. Rationalizations for the transformations are presented. The structure of 2b has been determined unambiguously from X-ray crystallographic analysis.
Resumo:
Indexing of a decagonal quasicrystal using the scheme utilizing five planar vectors and one perpendicular to them is examined in detail. A method for determining the indices of zone axes that a reciprocal vector would make in a decagonal phase of any periodicity has been proposed. By this method, the location of the zone axes made by any reciprocal vector can be predicted. The orthogonality condition has been simplified for the zone axes containing twofold vectors. The locations of zone axes have also been determined by an alternative method, utilizing spherical trigonometric calculations, which confirm the zone-axis locations given by the indices. The effect of one-dimensional periodicity on the indices and the accuracy of the zone-axis determination is discussed. Rules for the formation of zone axes between several reciprocal vectors and the prediction of all the reciprocal vectors in a zone are evolved.
Resumo:
This work describes the electrical switching behavior of three telluride based amorphous chalcogenide thin film samples, Al-Te, Ge-Se-Te and Ge-Te-Si. These amorphous thin films are made using bulk glassy ingots, prepared by conventional melt quenching technique, using flash evaporation technique; while Al-Te sample has been coated in coplanar electrode geometry, Ge-Se-Te and Ge-Te-Si samples have been deposited with sandwich electrodes. It is observed that all the three samples studied, exhibit memory switching behavior in thin film form, with Ge-Te-Si sample exhibiting a faster switching characteristic. The difference seen in the switching voltages of the three samples studied has been understood on the basis of difference in device geometry and thickness. Scanning electron microscopic image of switched region of a representative Ge15Te81Si4 sample shows a structural change and formation of crystallites in the electrode region, which is responsible for making a conducting channel between the two electrodes during switching.
Resumo:
We present noise measurements of a phase fluorometric oxygen sensor that sets the limits of accuracy for this instrument. We analyze the phase sensitive detection measurement system with the signal ''shot'' noise being the only significant contribution to the system noise. Based on the modulated optical power received by the photomultiplier, the analysis predicts a noise spectral power density that was within 3 dB of the measured power spectral noise density. Our results demonstrate that at a received optical power of 20 fW the noise level was low enough to permit the detection of a change oxygen concentration of 1% at the sensor. We also present noise measurements of a new low-cost version of this instrument that uses a photodiode instead of a photomultiplier. These measurements show that the noise for this instrument was limited by noise generated in the preamplifier following the photodiode. (C) 1996 Society of Photo-Optical Instrumentation Engineers.
Resumo:
We assume the large-scale diffuse magnetic field of the Sun to originate from the poloidal component of a dynamo operating at the base of the convection zone, whereas the sunspots are due to the toroidal component. The evolution of the poloidal component is studied to model the poleward migration of the diffuse field seen on the solar surface and the polar reversal at the time of sunspot maxima (Dikpati and Choudhuri 1994, 1995).
Resumo:
Phase relations in the pseudoternary system CaO-CoO-SiO2 have been established at 1323 K. Three quaternary oxides were found to be stable: CaCoSi2O6 with clinopyroxene (Cpx), Ca2CoSi2O7 with melilite (Mel), and CaCoSiO4 with olivine (Ol) structures. The Gibbs energies of formation of the quaternary oxides from their component binary oxides were measured using solid-state galvanic cells incorporating yttria-stabilized zirconia as the solid electrolyte in the temperature range of 1000-1324 K. The results can be summarized as follows: CoO (rs) + CaO (rs) + 2SiO(2) (Qtz) --> CaCoSi2O6 (Cpx), Delta G(f)(0) = -117920 + 11.26T (+/-150) J/mol CoO (rs) + 2CaO (rs) + 2SiO(2) (Qtz) --> Ca2CoSi2O7 (Mel), Delta G(f)(0) = -192690 + 2.38T (+/-130) J/mol CoO (rs) + CaO (rs) + SiO2 (Qtz) --> CaCoSiO2 (Ol), Delta G(f)(0) = -100325 + 2.55T (+/-100) J/mol where rs = rock salt (NaCl) structure and Qtz = quartz. The uncertainty limits correspond to twice the standard error estimate. The experimentally observed miscibility gaps along the joins CaO-CoO and CaCoSiO4-Co2SiO4 were used to calculate the excess free energies of mixing for the solid solutions CaxCo1-xO and (CayCo1-y)CoSiO4:Delta G(E) = X(1 - X)[31975X + 26736 (1 - X)] J/mol and Delta G(E) = 23100 (+/-250) Y(1 - Y) J/mol. A T-X phase diagram for the binary CaO-CoO was computed from the thermodynamic information; the diagram agrees with information available in the literature. The computed miscibility gap along the CaCoSiO4-Co2SiO4 join is associated with a critical temperature of 1389 (+/-15) K. Stability fields for the various solid solutions and the quaternary compounds are depicted on chemical-potential diagrams for SiO2, CaO, and CoO at 1323 K.
Resumo:
The coexistence of quasicrystals and rational approximant structures (RAS) has been observed in melt-spun Al80Cr14Si6, Al80Mn14Si6 and Al75Mn10Cr5Si10 alloys. The presence of a b.c.c. alpha-AlMnSi phase in Al-Mn-Si and alpha-AlMnSi(Cr) phase in Al-Mn-Cr-Si has been seen. A multiple twinning around an irrational axis of the RAS has been reported in an aggregate of fine size cubic crystallites in all three alloys. Selected area diffraction patterns show that the crystalline aggregate symmetry is linked to the icosahedral point group symmetry (m35). Various ways of expressing the twin relationship in the cubic crystalline aggregates have been discussed. The thermal stability of the icosahedral phase at high temperatures reveals that the icosahedral phase in Al-Mn-Si and Al-Mn-Cr-Si alloys transforms to alpha-AlMnSi at temperatures of 690 and 670 K, respectively. In Al-Cr-Si alloy, heating to a high temperature (615 K) leads to the transformation of the icosahedral phase into a new metastable phase having an ordered cubic structure equivalent to alpha-AlMnSi. The occurrence of multiple twinning leading to icosahedral symmetry in the as-spun Al-Cr-Si alloy is presumably due to this metastable phase. Copyright (C) 1996 Acta Metallurgica Inc.
Resumo:
Kinetic constants of MAb-hCG interactions have been determined using solid phase binding of I-125[hCG] to immobilized MAb. While association has been shown to follow the expected pattern, dissociation consists of at least two reversible steps, one with a rate constant of 0.0025 min(-1), and a second with a rate constant of 0.00023 min(-1). Validity of affinity constant measurements in the light of the complex reaction kinetics is discussed, A comparison between the method of surface plasmon resonance technology (BIAcore) and solid phase binding (SPB) for determination of kinetic parameters shows that SPB provides not only a cost-effective approach for determination of realtime kinetic parameters of macromolecular ligand-ligate interaction but also a method with several advantages over the BIAcore system in investigating the mechanism of antigen-antibody interaction.
Resumo:
The microstructural changes of Al-22 wt%U and Al-46 wt%U alloys containing 3 wt% Zr were investigated after heat treatment at 620 degrees C for 1 to 45 days, Though it is reported that addition of similar to 3 wt% Zr stabilizes the (U,Zr)Al-3 phase at room temperature, the present investigation shows that the (U,Zr)Al-3 phase is not stable but slowly transforms to the U0.9Al4 phase, The high temperature creep curves generated for these ternary alloys showed a wavy pattern which also suggests that the (U,Zr)Al-3 phase is not stable.
Resumo:
Non-resonant microwave absorption is studied as a function of temperature and composition in superconducting YBa2Cu3O7/CuO ceramic composite samples. In pure YBa2Cu3O7 only normal field dependence of the absorption is observed, where as in composites an anomalous non-monotonic field dependence is seen. The results are explained using an extended resistively shunted junction model and invoking the occurrence of junctions with phase difference psi(0) such that pi/2 < psi(0) < 3 pi/2. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
We use Monte Carlo simulations to obtain thermodynamic functions and correlation functions in a lattice model we propose for sponge phases. We demonstrate that the surface-density correlation function dominates the scattering only along the symmetric-sponge (SS) to asymmetric-sponge (AS) phase boundary but not the boundary between the sponge-with-free-edges (SFE) and symmetric-sponge phases. At this second thermodynamic transition the scattering is dominated instead by an edge-density (or seam-density) correlation function. This prediction provides an unambiguous diagnostic for experiments in search of the SS-SFE transition.
Resumo:
We report a reversible phase transformation of platelet-shaped ZnS nanostructures between wurtzite (WZ) and zinc blende (ZB) phases by reversible insertion/ ejection of dopant Mn(II) ions induced by a thermocyclic process. In a reaction flask loaded with WZ ZnS platelets and Mn molecular precursors, during heating Mn ions are incorporated and change the phase of the host nanostructures to ZB; during cooling Mn ions are spontaneously ejected, returning the host nanoplatelets to the original WZ phase. These reversible changes are monitored for several cycles with PL, EPR, XRD, and HRTEM. Interestingly, the (0001) WZ platelets transform to (110) ZB following a nucleation and growth process triggered by a local increase/depletion of the Mn2+ concentration in the nanocrystals.