933 resultados para crack
Resumo:
Short fatigue crack behaviour in a weld metal has been further investigated. The Schmid factor and the fractal dimension of short cracks on iso-stress specimens subjected to reversed bending have been determined and then applied to account for the distribution and orientation characteristics of short fatigue cracks. The result indicates that the orientation preference of short cracks is attributed to the large values of Schmid factor at relevant grains. The Schmid factors of most slip systems, which produced short cracks, are less than or equal to 0.4. Crack length measurements reveal that short crack path, compared to that of long crack, possesses a more stable and relatively larger value of fractal dimension. This is regarded as one of the typical features of short cracks.
Resumo:
Fatigue tests were performed using a purpose designed triangular shaped specimen to investigate the initiation and propagation of short fatigue cracks in a weld metal. It was observed that short fatigue cracks evolved from slip bands and were predominantly within ferrite grains. As the test progressed, the short crack density increased with minor changes in crack length. The growth of short cracks, in the early stage resulted mainly from coalescence with other existing cracks. The mechanism of short crack behaviour is discussed.
Resumo:
A perturbation solution is obtained for the local stress-strain fields in an axially cracked cylindrical shell. The tenth-order differential equations are used that take into account the transverse shear deformation. The perturbation of a curvature parameter, λ, is employed, where . The stress intensity factors for finite size cylindrical shells subjected to bending and internal pressure are evaluated. Sufficient accuracy can be obtained without using fine mesh sizes in regions near the crack tip. Also analyzed are the influence of cylinder diameter and shearing stiffness on bulging.
Resumo:
In order to understand the mechanism of the incipient spallation in rolled metals, a one dimensional statistical mode1 on evolution of microcracks in spallation was proposed. The crack length appears to be the fundamental variable in the statistical description. Two dynamic processes, crack nucleation and growth, were involved in the model of damage evolution. A simplified case was examined and preliminary correlation to experimental observations of spallation was made.
Resumo:
The prediction of cracking direction in composite materials is of significance to the design of composite structures. This paper presents several methods for predicting the cracking direction in the double grooved tension-shear specimen which gives mixed-mode cracking. Five different criteria are used in this analysis: two of them have been used by other investigators and the others are proposed by the present authors. The strain energy density criterion proposed by G.C. Sih is modified to take account of the influence of the anisotropy of the strength on the direction of crack. The two failure criteria of Tsai-Hill and Norris are extended to predict the crack orientation. The stress distributions in the near-notch zone are calculated by using the 8-node quadrilateral isoparametric finite element method. The predictions of all the criteria except one are in good agreement with the experimental measurement. In addition, on the basis of the FEM results, the size of the zone in which the singular term is dominant is estimated.
Resumo:
This paper presents a summary of the authors' recent work in following areas: (1) The stress-strain fields at crack tip in Reissner's plate. (2) The calculations of the stress intensity factors in finite size plates. (3) The stress-strain fields at crack tip in Reissner's shell. (4) The calculations of the stress intensity factors and bulging coefficients in finite size spherical shells. (5) The stress-strain fields along crack tip in three dimensional body with surface crack. (6) The calculation of stress intensity factors in a plate with surface crack.
Resumo:
The local-global anatysis method is systematically extended to the fracture analysis of spherical shells. On the basis of the shallow shell theory, which takes into account transverse shear deformations, governing equations for cracked spherical shells expressed in displacement and stress functions f, F and φ are proposed, and then a general solution including Modes, Ⅰ, Ⅱ, Ⅲ for stress-strain fields at crack tip in a spherical shell is obtained, which plays the same role as Williams's expansion in plane elasticity. The numerical results for finite-size spherical shells under different boundary conditions have been obtained. Furthermore, the bulging factors are analyzed with regard to shearing stiffness and an approximate formula is given.
Resumo:
A dimensionless relation of the form for collating fatigue crack starting growth data is proposed in which Δkth represents the stress intensity factor range at the threshold. Based on experimental results, this relation attains the value of 0.6 for a fatigue crack to start growth in the Austenitic stainless steel investigated in this work. Metallurgical examinations were also carried out to show a transgranular shear mode of cyclic cleavage and plastic shear.
Resumo:
A study of carbon fiber reinforced epoxy composite material with 0° ply or ±45°ply(unnotched or with edge notch) was carried out under static tensile and tension-tensioncyclic loading testing. Static and fatigue behaviour and damage failure modes in unnotched/notched specimens plied in different manners were analysed and compared with each other.A variety of techniques (acoustic emission, two types of strain extensometer, high speed pho-tography, optical microscopy, scanning electron microscope, etc.) were used to examine thedamage of the laminates. Experimental results show that when these carbon/epoxy laminateswith edge notch normal to the direction of the load are axially loaded in static or fatiguetension, the crack does not propagate along the length of notch but is in the interface (fiberdirection). The notch has no substantial effect on the stresses at the unnotched portion. Thedamage failure mechanism is discussed.
Resumo:
Near threshold, mixed mode (I and II), fatigue crack growth occurs mainly by two mechanisms, coplanar (or shear) mode and branch (or tensile) mode. For a constant ratio of ΔKI/ΔKII the shear mode growth shows a self-arrest character and it would only start again when ΔKI and ΔKII are increased. Both shear crack growth and the early stages of tensile crack growth, are of a crystallographic nature; the fatigue crack proceeds along slip planes or grain boundaries. The appearance of the fracture surfaces suggest that the mechanism of crack extension is by developing slip band microcracks which join up to form a macrocrack. This process is thought to be assisted by the nature of the plastic deformation within the reversed plastic zone where high back stresses are set up by dislocation pile-ups against grain boundaries. The interaction of the crack tip stress field with that of the dislocation pile-ups leads to the formation of slip band microcracks and subsequent crack extension. The change from shear mode to tensile mode growth probably occurs when the maximum tensile stress and the microcrack density in the maximum tensile plane direction attain critical values.
Resumo:
Stress and strain distributions and crack opening displacement characteristics of short cracks have been studied in single edge notch bend and centre cracked panel specimens using elastic–plastic finite element analyses incorporating both a non strain hardening and a power law hardening behaviour. J contour integral solutions to describe stress strain conditions at crack tips for short cracks differ from those for long cracks. The analyses show that (i) short cracks can propagate at stress levels lower than those required for long cracks and (ii) a two-parameter description of crack tip fields is necessary for crack propagation.
Resumo:
基于Bernoulli-Euler梁振动理论,以等效弹簧来模拟裂纹引起的局部软化效应和由非完全固支边界条件引起的转角效应.推导了悬臂梁在不确定边界条件下确定其振动频率的特征方程,直接利用该特征方程,提出一种有效估计裂纹参数的优化方法,通过计算测量频率和理论频率之间的误差目标函数最小化即可识别裂纹参数-裂纹位置和深度.最后,应用两个实例-理想固支边界条件下和非完全固支边界条件下的悬臂梁实验来说明本文方法的有效性.实验结果表明:只需梁结构前三阶频率即可识别裂纹位置和深度.对于理想边界条件下的裂纹参数识别,在测量频率存在小误差情况下,该方法仍能给出比较满意的结果,对于非完全固支边界条件下的裂纹参数识别,利用本文方法能得到比Narkis的方法更精确的裂纹位置识别结果.同时本文方法还能给出比较满意的裂纹深度识别结果.
Resumo:
采用SHTB技术对纤维增强复合材料裂纹动态起裂行为进行了实验研究。使用应变片方法确定了裂纹的起裂时间,结合有限元数值模拟得到了裂纹的起裂韧性;同时观察了裂纹在冲击载荷作用下的裂纹起裂和扩展方式,分析了纤维的铺层角度对裂纹起裂和扩增的影响。
Resumo:
应用超声波探测抽油杆疲劳裂纹扩展时的深度a, 通过室内实验找出D级抽油杆裂纹深度a和裂纹宽度c之间的比趋向于0.78, 简化后可直接研究超声波信号V和裂纹深度a之间的关系, 从而用V-a关系估算有疲劳裂纹D级抽油杆的剩余寿命, 避免杆断带来的经济损失.
Resumo:
研究两半无限大黏弹性体间Griffith界面裂纹在简谐载荷作用下裂纹尖端动应力场的奇异特性。通过引入裂纹张开位移和裂纹位错密度函数,相应的混合边值问题归结为一组耦合的奇异积分方程。渐近分析表明裂尖动应力场的奇异特征完全包含在奇异积分方程的基本解中。通过对基本解的深入分析发现黏弹性材料界面裂纹尖动应力场具有与材料参数和外载荷频率相关的振荡奇异特性。以标准线性固体黏弹材料为例讨论了材料参数和载荷频率对奇性指数和振荡指数的影响。