892 resultados para cortisol salivaire
Resumo:
Purpose: To examine the effect of progressive resistance training on muscle function, functional performance, balance, body composition, and muscle thickness in men receiving androgen deprivation for prostate cancer. Methods: Ten men aged 59-82 yr on androgen deprivation for localized prostate cancer undertook progressive resistance training for 20 wk at 6- to 12-repetition maximum (RM) for 12 upper- and lower-body exercises in a university exercise rehabilitation clinic. Outcome measures included muscle strength and muscle endurance for the upper and lower body, functional performance (repeated chair rise, usual and fast 6-m walk, 6-m backwards walk, stair climb, and 400-m walk time), and balance by sensory organization test. Body composition was measured by dual-energy x-ray absorptiometry and muscle thickness at four anatomical sites by B-mode ultrasound. Blood samples were assessed for prostate specific antigen (PSA), testosterone, growth hormone (GH), cortisol, and hemoglobin. Results: Muscle strength (chest press, 40.5%; seated row, 41.9%; leg press, 96.3%; P < 0.001) and muscle endurance (chest press, 114.9%; leg press, 167.1%; P < 0.001) increased significantly after training. Significant improvement (P < 0.05) occurred in the 6-m usual walk (14.1%), 6-m backwards walk (22.3%), chair rise (26.8%), stair climbing (10.4%), 400-m walk (7.4%), and balance (7.8%). Muscle thickness increased (P < 0.05) by 15.7% at the quadriceps site. Whole-body lean mass was preserved with no change in fat mass. There were no significant changes in PSA, testosterone, GH, cortisol, or hemoglobin. Conclusions: Progressive resistance exercise has beneficial effects on muscle strength, functional performance and balance in older men receiving androgen deprivation for prostate cancer and should be considered to preserve body composition and reduce treatment side effects.
Resumo:
Monogenic mutations leading to excessive activation of the mineralocorticoid pathway result, almost always, in suppressed renin and hypertension in adult life and sometimes in hypokalaemia and alkalosis, which can be severe. In most of these syndromes, precise molecular changes in specific steroidogenic or effector genes have been identified, permitting appreciation of (1) pathophysiology, (2) great diversity of phenotype and (3) possibility of genetic methods of diagnosis. Yet to be achieved elucidation of the genetic basis of familial hyperaldosteronism type 11, the most common and clinically significant of them, will enhance detection of primary aldosteronism, currently the commonest specifically treatable and potentially curable form of hypertension. While classic, complete-phenotype presentations of monogenic forms of mineralocorticoid hypertension are rarely recognised, more subtle genetic expression causing less florid manifestations could represent a significant proportion of so-called 'essential hypertension.'
Resumo:
Interest in the relationship between inflammation and oxidative stress has increased dramatically in recent years, not only within the clinical setting but also in the fields of exercise biochemistry and immunology. Inflammation and oxidative stress share a common role in the etiology of a variety Of Chronic diseases. During exercise, inflammation and oxidative stress are linked via muscle metabolism and muscle damage. Because oxidative stress and inflammation have traditionally been associated with fatigue and impaired recovery from exercise, research has focused on nutritional strategies aimed at reducing these effects. In this review, we have evaluated the findings of studies involving antioxidant supplementation on alterations in markers of inflammation (e.g., cytokines, C-reactive protein and cortisol). This review focuses predominantly on the role of reactive oxygen and nitrogen species generated from muscle metabolism and muscle damage during exercise and on the modulatory effects of antioxidant supplements. Furthermore, we have analyzed the influence of factors such as the dose, timing, supplementation period and bioavailability of antioxidant nutrients. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Loss of adipose tissue in cancer cachexia in mice bearing the MAC16 tumour arises from an increased lipid mobilisation through increased expression of zinc-α2-glycoprotein (ZAG) in white (WAT) and brown (BAT) adipose tissue. Glucocorticoids have been suggested to increase ZAG expression, and this study examines their role in cachexia and the mechanisms involved. In mice bearing the MAC16 tumour, serum cortisol concentrations increased in parallel with weight loss, and the glucocorticoid receptor antagonist RU38486 (25 mg kg-1) attenuated both the loss of body weight and ZAG expression in WAT. Dexamethasone (66 μg kg-1) administration to normal mice produced a six-fold increase in ZAG expression in both WAT and BAT, which was also attenuated by RU38486. In vitro studies using 3T3-L1 adipocytes showed dexamethasone (1.68 μM) to stimulate lipolysis and increase ZAG expression, and both were attenuated by RU38486 (10 μM), anti-ZAG antibody (1 μ gml-1), and the β3-adrenoreceptor (β3-AR) antagonist SR59230A (10 μM). Zinc-α2-glycoprotein also increased its own expression and this was attenuated by SR59230A, suggesting that it was mediated through the β3-AR. This suggests that glucocorticoids stimulate lipolysis through an increase in ZAG expression, and that they are responsible for the increase in ZAG expression seen in adipose tissue of cachectic mice. © 2005 Cancer Research UK.
Resumo:
Orexins A and B (ORA and ORB) are neuropeptide hormones found throughout the central nervous system and periphery. They are required for a host of physiological processes including mitogen-activated protein kinase (MAPK) regulation, steroidogenesis, appetite control and energy regulation. While some signalling mechanisms have been proposed for individual recombinant orexin receptors in generic mammalian cell types, it is clear that the peripheral effects of orexin are spatially and temporally complex. This study dissects the different G-protein signalling and MAPK pathways activated in a pluripotent human adrenal H295R cell line capable of all the physiological steps involved in steroidogenesis. Both extracellular receptor kinase 1/2 (ERK1/2) and p38 were phosphorylated rapidly with a subsequent decline, in a time- and dose-dependent manner, in response to both ORA and ORB. Conversely, there was little or no direct activation of the ERK5 or JNK pathway. Analysis using signalling and MAPK inhibitors as well as receptor-specific antagonists determined the precise mediators of the orexin response in these cells. Both ERK1/2 and p38 activation were predominantly Gq- and to a lesser extent Gs-mediated; p38 activation even had a small Gi-component. Effects were broadly comparable for both orexin sub-types ORA and ORB and although most of the effects were transmitted through the orexin receptor-1 subtype, we did observe a role for orexin receptor-2-mediated activation of both ERK1/2 and p38. Cortisol secretion also differed in response to ORA and ORB. These data suggest multiple roles for orexin-mediated MAPK activation in an adrenal cell-line, this complexity may help to explain the diverse biological actions of orexins with wide-ranging consequences for our understanding of the mechanisms initiated by these steroidogenic molecules.
Resumo:
Weight loss in advanced cancer patients is refractory to conventional nutritional support. This may be due to metabolic changes mediated by proinflammatory cytokines, hormones, and tumor-derived products. We previously showed that a nutritional supplement enriched with fish oil will reverse weight loss in patients with pancreatic cancer cachexia. The present study examines the effect of this supplement on a number of mediators thought to play a role in cancer cachexia. Twenty weight-losing patients with pancreatic cancer were asked to consume a nutritional supplement providing 600 kcal and 2 g of eicosapentaenoic acid per day. At baseline and after 3 wk, patients were weighed and samples were collected to measure serum concentrations of interleukin (IL)-6 and its soluble receptor tumor necrosis factor receptors I and II, cortisol, insulin, and leptin, peripheral blood mononuclear cell production of IL-1 beta, IL-6, and tumor necrosis factor, and urinary excretion of proteolysis inducing factor. After 3 wk of consumption of the fish oil-enriched nutritional supplement, there was a significant fall in production of IL-6 (from median 16.5 to 13.7 ng/ml, P = 0.015), a rise in serum insulin concentration (from 3.3 to 5.0 mU/l, P = 0.0064), a fall in the cortisol-to-insulin ratio (P = 0.0084), and a fall in the proportion of patients excreting proteolysis inducing factor (from 88% to 40%, P = 0.008). These changes occurred in association with weight gain (median 1 kg, P = 0.024). Various mediators of catabolism in cachexia are modulated by administration of a fish oil-enriched nutritional supplement in pancreatic cancer patients. This may account for the reversal of weight loss in patients consuming this supplement.
Resumo:
Kynurenine (KYN) is the first stable metabolite of the kynurenine pathway, the major route of tryptophan. (TRP) metabolIsm. In the liver, cortisol-inducible tIyptophan-2,3-dioxygenase (TDO) is the first enzyme and rate limiting step. In extrahepatic tissues, it is superceded by indoleamine-2,3-dioxygenase (IDO), an enzyme with a wider substrate specificity. Earlier work in this research group has found substantial elevations in plasma KYN in fasting Tourette's Syndrome (TS) patients with normal TRP and neopterin. The aim of our initial pilot study was to confirm this increase in KYN in fasting human TS patients compared with normal controls, and to see how changes in diet :ay influence certain kynurenine pathway variables. However, we failed to detect a change in plasma KYN, TRP, kynurenic acid (KYNA), neopterin or cortisol between the fasting TS and control groups. Moreover, none of the variables was affected by dietary status, and thus candidates selected for the larger cross-sectional study were permitted to eat and drink freely on the day that blood samples were submitted, but were requested to avoid products containing caffeine, aspirin or nicotine. In the cross-sectional study, TS patients exhibited significantly higher plasma KYN concentrations than controls, although the magnitude of the change was much smaller than originally found. This may be due to differences in detection procedure and the seasonal fluctuation of some biochemical variables, notably cortisol. The generalised increase in neopterin in the TS subject group, suggests a difference in the activity of cytokine-inducible IDO as a likely source for this elevated KYN. Other kynurenine pathway metabolites, specifIcally TRP, 3-hydroxykynurenine (HKY), 3-hydroxyanthranilic acid (HAA) and KYNA were unchanged. In view of recent speculation of the potential therapeutic effects of nicotine in TS, the lower KYN concentrations observed in TS smokers, compared with non-smoking TS patients, was another interesting finding. Tic-like movements, such as head-shakes (HS), which occur in rodents both spontaneously and following diverse drug treatments, closely resemble tic behaviours in humans. The animal tic model was used to examine what effects nicotine may have on shaking behaviours and on selected TRP metabolites. Acute systemic administration of nicotine to mice, produced a dose-dependent reduction in HS frequency (induced by the 5-HT2A/2C agonist DOl), which appeared to be mediated via central nicotinic cholinergic receptors, since mecamylamine pretreatment abolished this effect. Conversely, twice daily subcutaneous injections of nicotine for 7 days, led to an increase in spontaneous and DOI-induced HS. Chronic nicotine also caused a significant elevation m plasma and whole brain KYN concentrations, but plasma TRP, HKY, HAA and KYNA were unaltered. In addition, no change in brain 5-HT or 5-HIAA concentrations or 5-HT turnover, was found. Despite contrasting results from human and animal studIes, a role for nicotine in the mediation of tic-like movements is indicated. The relevance of the kynurenine pathway to TS and the potential role played by nicotine in modifying tic-like behaviours is discussed.
Resumo:
Kynurenine (KYN) is the first stable metabolite of the kynurenine pathway, which accounts for over 95% of tryptophan metabolism. Two previous studies by this research group reported elevated plasma KYN in Tourette syndrome (TS) patients when compared with age and sex matched controls and another study showed that KYN potentiated 5-HT2A-mediated head-shakes (HS) in rodents. These movements have been suggested to model tics in TS. This raised the questions how KYN acts in eliciting this response and whether it is an action of its own or of a further metabolite along the kynurenine pathway. In the liver, where most of the kynurenine pathway metabolism takes place under physiological conditions, the first and the rate limiting enzyme is tryptophan-dioxygenase (TDO) which can be induced by cortisol. In extrahepatic tissues the same step of the pathway is catalyzed by indoleamine-dioxygenase (IDO), which is induced by cytokines, predominantly interferon-y (INF-y). Plasma neopterin, which shows parallel increase with KYN following immune stimulation, was also found elevated in one of these studies positively correlating with KYN. In the present work animal studies suggested that KYN potentiates and quinolinic acid (QUINA) dose dependently inhibits the 5-HT2A-mediated HS response in mice. The potentiating effect seen with KYN was suggested to be an effect of KYN itself. Radioligand binding and phosphoinositide (PI) hydrolysis studies were done to explore the mechanisms by which kynurenine pathway metabolites could alter a 5-HT2A-receptor mediated response. None of the kynurenine pathway metabolites tested showed direct binding to 5-HT2A-receptors. PI hydrolysis studies with KYN and QUINA showed that KYN did not have any effect while QUINA inhibited 5-HT2A-mediated PI hydrolysis. Plasma cortisol determination in TS patients with elevated plasma KYN did not show elevated plasma cortisol levels, suggesting that the increase of plasma KYN in these TS patients is unlikely to be due to an increased TDO activity induced by increased cortisol. Attention deficit hyperactivity disorder (ADHD) is commonly associated with TS. Salivary cortisol detected in a group of children primarily affected with ADHD showed significantly lower salivary cortisol levels when compared with age and sex matched controls. Plasma tryptophan, KYN, neopterin, INF-y and KYN/tryptophan ratio and night-time urinary 6-sulphatoxymelatonin (aMT6s) excretion measured in a group of TS patients did not show any difference in their levels when compared with age and sex matched controls, but TS patients failed to show the expected positive correlation seen between plasma INF-y, neopterin and KYN and the negative correlation seen between plasma KYN and night-time urinary aMT6s excretion seen in healthy controls. The relevance of the kynurenine pathway, melatonin secretion and cortisol to Tourette Syndrome and associated conditions and the mechanism by which KYN and QUINA alter the 5-HT2A-receptor mediated HS response are discussed.
Resumo:
Excretion of biopterin and the related pteridines neopterin and pterin was measured in urine samples from a group of 76 male and female unipolar and bipolar depressed outpatients receiving lithium therapy, and compared to 61 male and female control subjects. The ratio of neopterin to biopterin excreted (N/B) was significantly higher in the patients than the controls. The significant positive correlation between urinary neopterin and biopterin shown by the controls was absent in the patients, indicating disrupted biosynthesis of tetrahydrobiopterin.Urinary cortisol excretion in depressed patients was similar to controls, implying normal hypothalmus-pituitary-adrenal axis function in these patients, Serum folate was shown to correlate with urinary total biopterin excretion in female unipolar patients. Two groups of elderly females with senile dementia of Alzheimer type (SDAT) were examined for urinary pteridine excretion. In the first study of 10 patients, the N/B ratio was significantly higher than in 24 controls and the ratio B/B+ N significantly lower. A second study of 30 SDAT patients and 21 controls confirmed these findings. However, neopterin correlated with biopterin in both patients and controls, indicating that the alteration in tetrahydrobiopterin metabolism may be different to that shown in depression. Lithium had no effect in vivo or in vitro on Wistar rat brain or liver biosynthesis of tetrahydrobiopterin at a range of concentrations and duration of dosing period, showing that lithium was not responsible for the lowered biopterin excretion by depressed patients. No significant effects on tetrahydrobiopterin metabolism in the rat were shown by the tricyclic antidepressant imipramine, the anticonvulsant sodium valproate, the vitamin folic acid, the anticatecholaminergic agent amethylparatyrosine, the synthetic corticosteroid dexamethasone, or stimulation of natural cortisol by immobilisation stress. Scopolamine, an ant ichol inergic drug, lowered rat brain pterin which may relate to the tetrahydrobiopterin deficits shown in SDAT.
Resumo:
Pain is a ubiquitous yet highly variable experience. The psychophysiological and genetic factors responsible for this variability remain unresolved. We hypothesised the existence of distinct human pain clusters (PCs) composed of distinct psychophysiological and genetic profiles coupled with differences in the perception and the brain processing of pain. We studied 120 healthy subjects in whom the baseline personality and anxiety traits and the serotonin transporter-linked polymorphic region (5-HTTLPR) genotype were measured. Real-time autonomic nervous system parameters and serum cortisol were measured at baseline and after standardised visceral and somatic pain stimuli. Brain processing reactions to visceral pain were studied in 29 subjects using functional magnetic resonance imaging (fMRI). The reproducibility of the psychophysiological responses to pain was assessed at 1 year. In group analysis, visceral and somatic pain caused an expected increase in sympathetic and cortisol responses and activated the pain matrix according to fMRI studies. However, using cluster analysis, we found 2 reproducible PCs: at baseline, PC1 had higher neuroticism/anxiety scores (P ≤ 0.01); greater sympathetic tone (P < 0.05); and higher cortisol levels (P ≤ 0.001). During pain, less stimulus was tolerated (P ≤ 0.01), and there was an increase in parasympathetic tone (P ≤ 0.05). The 5-HTTLPR short allele was over-represented (P ≤ 0.005). PC2 had the converse profile at baseline and during pain. Brain activity differed (P ≤ 0.001); greater activity occurred in the left frontal cortex in PC1, whereas PC2 showed greater activity in the right medial/frontal cortex and right anterior insula. In health, 2 distinct reproducible PCs exist in humans. In the future, PC characterization may help to identify subjects at risk for developing chronic pain and may reduce variability in brain imaging studies. © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Resumo:
The early stages of dieting to lose weight have been associated with neuro-psychological impairments. Previous work has not elucidated whether these impairments are a function solely of unsupported or supported dieting. Raised cortico-steroid levels have been implicated as a possible causal mechanism. Healthy, overweight, pre-menopausal women were randomised to one of three conditions in which they dieted either as part of a commercially available weight loss group, dieted without any group support or acted as non-dieting controls for 8 weeks. Testing occurred at baseline and at 1, 4 and 8 weeks post baseline. During each session, participants completed measures of simple reaction time, motor speed, vigilance, immediate verbal recall, visuo-spatial processing and (at Week 1 only) executive function. Cortisol levels were gathered at the beginning and 30 min into each test session, via saliva samples. Also, food intake was self-recorded prior to each session and fasting body weight and percentage body fat were measured at each session. Participants in the unsupported diet condition displayed poorer vigilance performance (p=0.001) and impaired executive planning function (p=0.013) (along with a marginally significant trend for poorer visual recall (p=0.089)) after 1 week of dieting. No such impairments were observed in the other two groups. In addition, the unsupported dieters experienced a significant rise in salivary cortisol levels after 1 week of dieting (p<0.001). Both dieting groups lost roughly the same amount of body mass (p=0.011) over the course of the 8 weeks of dieting, although only the unsupported dieters experienced a significant drop in percentage body fat over the course of dieting (p=0.016). The precise causal nature of the relationship between stress, cortisol, unsupported dieting and cognitive function is, however, uncertain and should be the focus of further research. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
Background: Despite chronic pain being a feature of functional chest pain (FCP) its experience is variable. The factors responsible for this variability remain unresolved. We aimed to address these knowledge gaps, hypothesizing that the psychophysiological profiles of FCP patients will be distinct from healthy subjects. Methods: 20 Rome III defined FCP patients (nine males, mean age 38.7 years, range 28-59 years) and 20 healthy age-, sex-, and ethnicity-matched controls (nine males, mean 38.2 years, range 24-49) had anxiety, depression, and personality traits measured. Subjects had sympathetic and parasympathetic nervous system parameters measured at baseline and continuously thereafter. Subjects received standardized somatic (nail bed pressure) and visceral (esophageal balloon distension) stimuli to pain tolerance. Venous blood was sampled for cortisol at baseline, post somatic pain and post visceral pain. Key Results: Patients had higher neuroticism, state and trait anxiety, and depression scores but lower extroversion scores vs controls (all p < 0.005). Patients tolerated less somatic (p < 0.0001) and visceral stimulus (p = 0.009) and had a higher cortisol at baseline, and following pain (all p < 0.001). At baseline, patients had a higher sympathetic tone (p = 0.04), whereas in response to pain they increased their parasympathetic tone (p ≤ 0.008). The amalgamating the data, we identified two psychophysiologically distinct 'pain clusters'. Patients were overrepresented in the cluster characterized by high neuroticism, trait anxiety, baseline cortisol, pain hypersensitivity, and parasympathetic response to pain (all p < 0.03). Conclusions & Inferences: In future, such delineations in FCP populations may facilitate individualization of treatment based on psychophysiological profiling. © 2013 John Wiley & Sons Ltd.
Resumo:
Sexually-selected communication signals can be used by competing males to settle contests without incurring the costs of fighting. The ability to dynamically regulate the signal in a context-dependent manner can further minimize the costs of male aggressive interactions. Such is the case in the gymnotiform fish Brachyhypopomus gauderio, which, by coupling its electric organ discharge (EOD) waveform to endocrine systems with circadian, seasonal, and behavioral drivers, can regulate its signal to derive the greatest reproductive benefit. My dissertation research examined the functional role of the EOD plasticity observed in male B. gauderio and the physiological mechanisms that regulate the enhanced male EOD. To evaluate whether social competition drives the EOD changes observed during male-male interactions, I manipulated the number of males in breeding groups to create conditions that exemplified low and high competition and measured their EOD and steroid hormone levels. My results showed that social competition drives the enhancement of the EOD amplitude of male B. gauderio. In addition, changes in the EOD of males due to changes in their social environment were paralleled by changes in the levels of androgens and cortisol. I also examined the relationship between body size asymmetry, EOD waveform parameters, and aggressive physical behaviors during male-male interactions in B. gauderio, in order to understand more fully the role of EOD waveforms as reliable signals. While body size was the best determinant of dominance in male B. gauderio, EOD amplitude reliably predicted body condition, a composite of length and weight, for fish in good body condition. To further characterize the mechanisms underlying the relationship between male-male interactions and EOD plasticity, I identified the expression of the serotonin receptor 1A, a key player in the regulation of aggressive behavior, in the brains of B. gauderio. I also identified putative regulatory regions in this receptor in B. gauderio and other teleost fish, highlighting the presence of additional plasticity. In conclusion, male-male competition seems to be a strong selective driver in the evolution of the male EOD plasticity in B. gauderio via the regulatory control of steroid hormones and the serotonergic system.
Resumo:
Sexually-selected communication signals can be used by competing males to settle contests without incurring the costs of fighting. The ability to dynamically regulate the signal in a context-dependent manner can further minimize the costs of male aggressive interactions. Such is the case in the gymnotiform fish Brachyhypopomus gauderio, which, by coupling its electric organ discharge (EOD) waveform to endocrine systems with circadian, seasonal, and behavioral drivers, can regulate its signal to derive the greatest reproductive benefit. My dissertation research examined the functional role of the EOD plasticity observed in male B. gauderio and the physiological mechanisms that regulate the enhanced male EOD. To evaluate whether social competition drives the EOD changes observed during male-male interactions, I manipulated the number of males in breeding groups to create conditions that exemplified low and high competition and measured their EOD and steroid hormone levels. My results showed that social competition drives the enhancement of the EOD amplitude of male B. gauderio. In addition, changes in the EOD of males due to changes in their social environment were paralleled by changes in the levels of androgens and cortisol. I also examined the relationship between body size asymmetry, EOD waveform parameters, and aggressive physical behaviors during male-male interactions in B. gauderio, in order to understand more fully the role of EOD waveforms as reliable signals. While body size was the best determinant of dominance in male B. gauderio, EOD amplitude reliably predicted body condition, a composite of length and weight, for fish in good body condition. To further characterize the mechanisms underlying the relationship between male-male interactions and EOD plasticity, I identified the expression of the serotonin receptor 1A, a key player in the regulation of aggressive behavior, in the brains of B. gauderio. I also identified putative regulatory regions in this receptor in B. gauderio and other teleost fish, highlighting the presence of additional plasticity. In conclusion, male-male competition seems to be a strong selective driver in the evolution of the male EOD plasticity in B. gauderio via the regulatory control of steroid hormones and the serotonergic system.
Resumo:
Circadian rhythms, patterns of each twenty-four hour period, are found in most bodily functions. The biological cycles of between 20 and 28 hours have a profound effect on an individual's mood, level of performance, and physical well being. Loss of synchrony of these biological rhythms occurs with hospitalization, surgery and anesthesia. The purpose of this comparative, correlational study was to determine the effects of circadian rhythm disruption in post-surgical recovery. Data were collected during the pre-operative and post-operative periods in the following indices: body temperature, blood pressure, heart rate, urine cortisol level and locomotor activity. The data were analyzed by cosinor analysis for evidence of circadian rhythmicity and disruptions throughout the six day study period which encompassed two days pre-operatively, two days post-operatively, and two days after hospital discharge. The sample consisted of five men and five women who served as their own pre-surgical control. The surgical procedures were varied. Findings showed evidence of circadian disruptions in all subjects post-operatively, lending support for the hypotheses.