874 resultados para context space theory
Resumo:
It has been proposed that inertial clustering may lead to an increased collision rate of water droplets in clouds. Atmospheric clouds and electrosprays contain electrically charged particles embedded in turbulent flows, often under the influence of an externally imposed, approximately uniform gravitational or electric force. In this thesis, we present the investigation of charged inertial particles embedded in turbulence. We have developed a theoretical description for the dynamics of such systems of charged, sedimenting particles in turbulence, allowing radial distribution functions to be predicted for both monodisperse and bidisperse particle size distributions. The governing parameters are the particle Stokes number (particle inertial time scale relative to turbulence dissipation time scale), the Coulomb-turbulence parameter (ratio of Coulomb ’terminalar speed to turbulence dissipation velocity scale), and the settling parameter (the ratio of the gravitational terminal speed to turbulence dissipation velocity scale). For the monodispersion particles, The peak in the radial distribution function is well predicted by the balance between the particle terminal velocity under Coulomb repulsion and a time-averaged ’drift’ velocity obtained from the nonuniform sampling of fluid strain and rotation due to finite particle inertia. The theory is compared to measured radial distribution functions for water particles in homogeneous, isotropic air turbulence. The radial distribution functions are obtained from particle positions measured in three dimensions using digital holography. The measurements support the general theoretical expression, consisting of a power law increase in particle clustering due to particle response to dissipative turbulent eddies, modulated by an exponential electrostatic interaction term. Both terms are modified as a result of the gravitational diffusion-like term, and the role of ’gravity’ is explored by imposing a macroscopic uniform electric field to create an enhanced, effective gravity. The relation between the radial distribution functions and inward mean radial relative velocity is established for charged particles.
Resumo:
The problem of optimal design of a multi-gravity-assist space trajectories, with free number of deep space maneuvers (MGADSM) poses multi-modal cost functions. In the general form of the problem, the number of design variables is solution dependent. To handle global optimization problems where the number of design variables varies from one solution to another, two novel genetic-based techniques are introduced: hidden genes genetic algorithm (HGGA) and dynamic-size multiple population genetic algorithm (DSMPGA). In HGGA, a fixed length for the design variables is assigned for all solutions. Independent variables of each solution are divided into effective and ineffective (hidden) genes. Hidden genes are excluded in cost function evaluations. Full-length solutions undergo standard genetic operations. In DSMPGA, sub-populations of fixed size design spaces are randomly initialized. Standard genetic operations are carried out for a stage of generations. A new population is then created by reproduction from all members based on their relative fitness. The resulting sub-populations have different sizes from their initial sizes. The process repeats, leading to increasing the size of sub-populations of more fit solutions. Both techniques are applied to several MGADSM problems. They have the capability to determine the number of swing-bys, the planets to swing by, launch and arrival dates, and the number of deep space maneuvers as well as their locations, magnitudes, and directions in an optimal sense. The results show that solutions obtained using the developed tools match known solutions for complex case studies. The HGGA is also used to obtain the asteroids sequence and the mission structure in the global trajectory optimization competition (GTOC) problem. As an application of GA optimization to Earth orbits, the problem of visiting a set of ground sites within a constrained time frame is solved. The J2 perturbation and zonal coverage are considered to design repeated Sun-synchronous orbits. Finally, a new set of orbits, the repeated shadow track orbits (RSTO), is introduced. The orbit parameters are optimized such that the shadow of a spacecraft on the Earth visits the same locations periodically every desired number of days.
Resumo:
Nanoparticles are fascinating where physical and optical properties are related to size. Highly controllable synthesis methods and nanoparticle assembly are essential [6] for highly innovative technological applications. Among nanoparticles, nonhomogeneous core-shell nanoparticles (CSnp) have new properties that arise when varying the relative dimensions of the core and the shell. This CSnp structure enables various optical resonances, and engineered energy barriers, in addition to the high charge to surface ratio. Assembly of homogeneous nanoparticles into functional structures has become ubiquitous in biosensors (i.e. optical labeling) [7, 8], nanocoatings [9-13], and electrical circuits [14, 15]. Limited nonhomogenous nanoparticle assembly has only been explored. Many conventional nanoparticle assembly methods exist, but this work explores dielectrophoresis (DEP) as a new method. DEP is particle polarization via non-uniform electric fields while suspended in conductive fluids. Most prior DEP efforts involve microscale particles. Prior work on core-shell nanoparticle assemblies and separately, nanoparticle characterizations with dielectrophoresis and electrorotation [2-5], did not systematically explore particle size, dielectric properties (permittivity and electrical conductivity), shell thickness, particle concentration, medium conductivity, and frequency. This work is the first, to the best of our knowledge, to systematically examine these dielectrophoretic properties for core-shell nanoparticles. Further, we conduct a parametric fitting to traditional core-shell models. These biocompatible core-shell nanoparticles were studied to fill a knowledge gap in the DEP field. Experimental results (chapter 5) first examine medium conductivity, size and shell material dependencies of dielectrophoretic behaviors of spherical CSnp into 2D and 3D particle-assemblies. Chitosan (amino sugar) and poly-L-lysine (amino acid, PLL) CSnp shell materials were custom synthesized around a hollow (gas) core by utilizing a phospholipid micelle around a volatile fluid templating for the shell material; this approach proves to be novel and distinct from conventional core-shell models wherein a conductive core is coated with an insulative shell. Experiments were conducted within a 100 nl chamber housing 100 um wide Ti/Au quadrapole electrodes spaced 25 um apart. Frequencies from 100kHz to 80MHz at fixed local field of 5Vpp were tested with 10-5 and 10-3 S/m medium conductivities for 25 seconds. Dielectrophoretic responses of ~220 and 340(or ~400) nm chitosan or PLL CSnp were compiled as a function of medium conductivity, size and shell material.
Resumo:
Three-dimensional flow visualization plays an essential role in many areas of science and engineering, such as aero- and hydro-dynamical systems which dominate various physical and natural phenomena. For popular methods such as the streamline visualization to be effective, they should capture the underlying flow features while facilitating user observation and understanding of the flow field in a clear manner. My research mainly focuses on the analysis and visualization of flow fields using various techniques, e.g. information-theoretic techniques and graph-based representations. Since the streamline visualization is a popular technique in flow field visualization, how to select good streamlines to capture flow patterns and how to pick good viewpoints to observe flow fields become critical. We treat streamline selection and viewpoint selection as symmetric problems and solve them simultaneously using the dual information channel [81]. To the best of my knowledge, this is the first attempt in flow visualization to combine these two selection problems in a unified approach. This work selects streamline in a view-independent manner and the selected streamlines will not change for all viewpoints. My another work [56] uses an information-theoretic approach to evaluate the importance of each streamline under various sample viewpoints and presents a solution for view-dependent streamline selection that guarantees coherent streamline update when the view changes gradually. When projecting 3D streamlines to 2D images for viewing, occlusion and clutter become inevitable. To address this challenge, we design FlowGraph [57, 58], a novel compound graph representation that organizes field line clusters and spatiotemporal regions hierarchically for occlusion-free and controllable visual exploration. We enable observation and exploration of the relationships among field line clusters, spatiotemporal regions and their interconnection in the transformed space. Most viewpoint selection methods only consider the external viewpoints outside of the flow field. This will not convey a clear observation when the flow field is clutter on the boundary side. Therefore, we propose a new way to explore flow fields by selecting several internal viewpoints around the flow features inside of the flow field and then generating a B-Spline curve path traversing these viewpoints to provide users with closeup views of the flow field for detailed observation of hidden or occluded internal flow features [54]. This work is also extended to deal with unsteady flow fields. Besides flow field visualization, some other topics relevant to visualization also attract my attention. In iGraph [31], we leverage a distributed system along with a tiled display wall to provide users with high-resolution visual analytics of big image and text collections in real time. Developing pedagogical visualization tools forms my other research focus. Since most cryptography algorithms use sophisticated mathematics, it is difficult for beginners to understand both what the algorithm does and how the algorithm does that. Therefore, we develop a set of visualization tools to provide users with an intuitive way to learn and understand these algorithms.
Resumo:
With the insatiable curiosity of human beings to explore the universe and our solar system, it is essential to benefit from larger propulsion capabilities to execute efficient transfers and carry more scientific equipment. In the field of space trajectory optimization the fundamental advances in using low-thrust propulsion and exploiting the multi-body dynamics has played pivotal role in designing efficient space mission trajectories. The former provides larger cumulative momentum change in comparison with the conventional chemical propulsion whereas the latter results in almost ballistic trajectories with negligible amount of propellant. However, the problem of space trajectory design translates into an optimal control problem which is, in general, time-consuming and very difficult to solve. Therefore, the goal of the thesis is to address the above problem by developing a methodology to simplify and facilitate the process of finding initial low-thrust trajectories in both two-body and multi-body environments. This initial solution will not only provide mission designers with a better understanding of the problem and solution but also serves as a good initial guess for high-fidelity optimal control solvers and increases their convergence rate. Almost all of the high-fidelity solvers enjoy the existence of an initial guess that already satisfies the equations of motion and some of the most important constraints. Despite the nonlinear nature of the problem, it is sought to find a robust technique for a wide range of typical low-thrust transfers with reduced computational intensity. Another important aspect of our developed methodology is the representation of low-thrust trajectories by Fourier series with which the number of design variables reduces significantly. Emphasis is given on simplifying the equations of motion to the possible extent and avoid approximating the controls. These facts contribute to speeding up the solution finding procedure. Several example applications of two and three-dimensional two-body low-thrust transfers are considered. In addition, in the multi-body dynamic, and in particular the restricted-three-body dynamic, several Earth-to-Moon low-thrust transfers are investigated.
Resumo:
The purpose of this project in Boulder, Montana was to determine how much usable space was left in the cemetery for future burials and to locate old burial sites where headstones no longer exist.
Resumo:
In the past few years a great deal of attention has been given to the electrodeposition of alloys. For the main part, this investigation has been of scientific interest only; but in a few instances, such work has attained commercial importance.
Resumo:
Amorphous carbon has been investigated for a long time. Since it has the random orientation of carbon atoms, its density depends on the position of each carbon atom. It is important to know the density of amorphous carbon to use it for modeling advance carbon materials in the future. Two methods were used to create the initial structures of amorphous carbon. One is the random placement method by randomly locating 100 carbon atoms in a cubic lattice. Another method is the liquid-quench method by using reactive force field (ReaxFF) to rapidly decrease the system of 100 carbon atoms from the melting temperature. Density functional theory (DFT) was used to refine the position of each carbon atom and the dimensions of the boundaries to minimize the ground energy of the structure. The average densities of amorphous carbon structures created by the random placement method and the liquid-quench method are 2.59 and 2.44 g/cm3, respectively. Both densities have a good agreement with previous works. In addition, the final structure of amorphous carbon generated by the liquid-quench method has lower energy.
Resumo:
Asbestos-contaminated vermiculite attic insulation (VAI) produced from a mine near Libby, Montana, may be present in millions of homes along with other commercial asbestos-containing materials (ACM). The primary goal of the research described here was to develop and test procedures that would allow for the safe and effective weatherization of low-income homes with asbestos. The presence of asbestos insulation was confirmed by bulk sampling of the suspect asbestos material. The homes were then tested for the presence of asbestos fibers in the living spaces. All 40 homes containing VAI revealed the presence of amphibole asbestos in bulk samples. Asbestos (primarily chrysotile) was confirmed in bulk samples of ACM collected from 18 homes. Amphibole asbestos was detected in the living space of 12 (26%) homes, while chrysotile asbestos was detected in the living space of 45 (98%) homes. These results suggest that asbestos sources in homes can contribute to living space contamination
Resumo:
Sexual selection theory largely rests on the assumption that populations contain individual variation in mating preferences and that individuals are consistent in their preferences. However, there are few empirical studies of within-population variation and even fewer have examined individual male mating preferences. Here, we studied a color polymorphic population of the Lake Victoria cichlid fish Neochromis omnicaeruleus, a species in which color morphs are associated with different sex-determining factors. Wild-caught males were tested in three-way choice trials with multiple combinations of different females belonging to the three color morphs. Compositional log-ratio techniques were applied to analyze individual male mating preferences. Large individual variation in consistency, strength, and direction of male mating preferences for female color morphs was found and hierarchical clustering of the compositional data revealed the presence of four distinct preference groups corresponding to the three color morphs in addition to a no-preference class. Consistency of individual male mating preferences was higher in males with strongest preferences. We discuss the implications of these findings for our understanding of the mechanisms underlying polymorphism in mating preferences.
Resumo:
In his recent book on the contemporary politics of social work, Powell (2001) nominates Jan Fook and Karen Healy as two Australian authors who have made significant contributions to the radical or critical social work tradition. I have chosen to review them together, as each, in different ways, attempts to achieve the same purpose. That is, they attempt to provide a convincing account for adopting a critical approach to practice in the contemporary conditions of the 21st century and, in doing so, re-invigorate the radical tradition of social work practice. My first comment, important for the readership of this international journal, is that both books easily 'travel' beyond the Australian context.
Resumo:
Against the background of the emerging multicultural migration society, acquisition of intercultural competences is getting vitally important for youngsters to actively and effectively engage with intercultural dialogue in a co-existent life context. Contingencies for such intercultural dialogue and to foster intercultural competences of youngsters are opened in virtual space when youth with different ethnic, social and cultural background go online. However, differences in Internet use and competences acquisition as “digital inequality” also exist among youth with different socio-cultural background. This article reports on a quantitative survey of 300 Turkish migrant youth in Germany as empirical sample about how Internet use generally fosters their intercultural competences, what differences exist among them and which indicators can explain the differences. Preliminary findings show that the contingencies of Internet in fostering intercultural competences are still not much employed and realised by Turkish migrant youth. Four online groups connected with bonding, bridging, both (bonding and bridging) and none socio-cultural networks are found out based on the cluster analysis with SPSS. These different networks, from the perspective of social cultural capital, can explain the differences concerning development of intercultural competences among them. It is indicated in this research that many Turkish migrant youth still lack recognition and capabilities to construct their intercultural social networks or relations through using Internet and further to employ the relations as intercultural social capital or social support in their life context. This therefore poses a critical implication for youth work to help migrant youth construct and reconstruct their socio-cultural networks through using Internet so as to extend social support for competences acquisition.