999 resultados para comparative visualization
Resumo:
Design aspects of the Transversally Laminated Anisotropic (TLA) Synchronous Reluctance Motor (SynRM) are studied and the machine performance analysis compared to the Induction Motor (IM) is done. The SynRM rotor structure is designed and manufactured for a30 kW, four-pole, three-phase squirrel cage induction motor stator. Both the IMand SynRM were supplied by a sensorless Direct Torque Controlled (DTC) variablespeed drive. Attention is also paid to the estimation of the power range where the SynRM may compete successfully with a same size induction motor. A technicalloss reduction comparison between the IM and SynRM in variable speed drives is done. The Finite Element Method (FEM) is used to analyse the number, location and width of flux barriers used in a multiple segment rotor. It is sought for a high saliency ratio and a high torque of the motor. It is given a comparison between different FEM calculations to analyse SynRM performance. The possibility to take into account the effect of iron losses with FEM is studied. Comparison between the calculated and measured values shows that the design methods are reliable. A new application of the IEEE 112 measurement method is developed and used especially for determination of stray load losses in laboratory measurements. The study shows that, with some special measures, the efficiency of the TLA SynRM is equivalent to that of a high efficiency IM. The power factor of the SynRM at rated load is smaller than that of the IM. However, at lower partial load this difference decreases and this, probably, brings that the SynRM gets a better power factor in comparison with the IM. The big rotor inductance ratio of the SynRM allows a good estimating of the rotor position. This appears to be very advantageous for the designing of the rotor position sensor-less motor drive. In using the FEM designed multi-layer transversally laminated rotor with damper windings it is possible to design a directly network driven motor without degrading the motorefficiency or power factor compared to the performance of the IM.
Resumo:
High dynamic performance of an electric motor is a fundamental prerequisite in motion control applications, also known as servo drives. Recent developments in the field of microprocessors and power electronics have enabled faster and faster movements with an electric motor. In such a dynamically demanding application, the dimensioning of the motor differs substantially from the industrial motor design, where feasible characteristics of the motor are for example high efficiency, a high power factor, and a low price. In motion control instead, such characteristics as high overloading capability, high-speed operation, high torque density and low inertia are required. The thesis investigates how the dimensioning of a high-performance servomotor differs from the dimensioning of industrial motors. The two most common servomotor types are examined; an induction motor and apermanent magnet synchronous motor. The suitability of these two motor types indynamically demanding servo applications is assessed, and the design aspects that optimize the servo characteristics of the motors are analyzed. Operating characteristics of a high performance motor are studied, and some methods for improvements are suggested. The main focus is on the induction machine, which is frequently compared to the permanent magnet synchronous motor. A 4 kW prototype induction motor was designed and manufactured for the verification of the simulation results in the laboratory conditions. Also a dynamic simulation model for estimating the thermal behaviour of the induction motor in servo applications was constructed. The accuracy of the model was improved by coupling it with the electromagnetic motor model in order to take into account the variations in the motor electromagnetic characteristics due to the temperature rise.
Resumo:
Regular use of mouth rinses modifies the oral habitat, since bacterial populations are submitted to a high selective pressure during the treatment exercised by the active presence of the disinfectant. Mostly mouth rinses are based on the antibacterial effect of Chlorhexidine, Triclosan, essential oils and other antibacterials although other pharmaceutical characteristics can also affect their effectiveness. In this paper we compare"in vitro" the antibacterial effect of different oral rinsing solutions. Minimal Inhibitory Concentrations (MIC) and Minimal Bactericidal Concentrations (MBC) were determined as well as the kinetics of bacterial death in the presence of letal concentrations of the mouth rinses. MIC values expressed as Maximal Inhibitory Dilution (MID) of the mouth rinse ranged from 1 to 1/2048 depending on the microorganism and product, whereas Minimal Biocidal Concentration (MBC), expressed as Maximal Biocidal Dilution (MBD) ranged from 1 to 1/1024, being in general one dilution less than MIC. Maximal Biocidal Dilution is a good tool to measure the actual efficiency of mouth washing solutions. However, kinetics of death seems to be better in our work killing curves demonstrate that bacterial populations are mostly eliminated during the first minute after the contact of bacterial suspension and the mouth-washing solution. In all tested bacterial species mouth-washing solutions tested were able to reduce until suspension treated except 1 and 5