982 resultados para cold stress
Resumo:
Expendable bathythermograph data collected by the Ships of Opportunity (SOOP) - Ocean Monitoring Program are analyzed for seasonal and inter-annual variations of the cold pool. Two major SOOP transects within the Middle Atlantic Bight (Southern New England and New York) have been analyzed for the years common to both (1977-81). During the years 1977-81, over 200 transects were occupied, and almost 3,000 XBT's were dropped. Results show that the cold pool is formed with the onset of spring warming and persists until fall overturn, is consistent year to year in both area and weighted average annual temperature, and advects water from the northeast to the southwest. Results also show a 100-d lag in minimum temperature between the Southern New England and New York transects. DitTerences in bathymetry between the two transects and their influence on the cold pool are also discussed. Plots of average (1977-81) bottom temperature for both transects are discussed and show consistent annual weighted mean temperature and areas. Bottom temperature plots for individual years, as well as maximum and minimum bottom temperature plots, are presented as Appendix figures. (PDF file contains 28 pages.)
Resumo:
Overactivation of ionotropic glutamate receptors in oligodendrocytes induces cytosolic Ca2+ overload and excitotoxic death, a process that contributes to demyelination and multiple sclerosis. Excitotoxic insults cause well-characterized mitochondrial alterations and endoplasmic reticulum (ER) dysfunction, which is not fully understood. In this study, we analyzed the contribution of ER-Ca2+ release through ryanodine receptors (RyRs) and inositol triphosphate receptors (IP(3)Rs) to excitotoxicity in oligodendrocytes in vitro. First, we observed that oligodendrocytes express all previously characterized RyRs and IP(3)Rs. Blockade of Ca2+-induced Ca2+ release by TMB-8 following alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor-mediated insults attenuated both oligodendrocyte death and cytosolic Ca2+ overload. In turn, RyR inhibition by ryanodine reduced as well the Ca2+ overload whereas IP3R inhibition was ineffective. Furthermore, AMPA-triggered mitochondrial membrane depolarization, oxidative stress and activation of caspase-3, which in all instances was diminished by RyR inhibition. In addition, we observed that AMPA induced an ER stress response as revealed by alpha subunit of the eukaryotic initiation factor 2 alpha phosphorylation, overexpression of GRP chaperones and RyR-dependent cleavage of caspase-12. Finally, attenuating ER stress with salubrinal protected oligodendrocytes from AMPA excitotoxicity. Together, these results show that Ca2+ release through RyRs contributes to cytosolic Ca2+ overload, mitochondrial dysfunction, ER stress and cell death following AMPA receptor-mediated excitotoxicity in oligodendrocytes. Cell Death and Disease (2010) 1, e54; doi:10.1038/cddis.2010.31; published online 15 July 2010
Resumo:
The tension and compression of single-crystalline silicon nanowires (SiNWs) with different cross-sectional shapes are studied systematically using molecular dynamics simulation. The shape effects on the yield stresses are characterized. For the same surface to volume ratio, the circular cross-sectional SiNWs are stronger than the square cross-sectional ones under tensile loading, but reverse happens in compressive loading. With the atoms colored by least-squares atomic local shear strain, the deformation processes reveal that the failure modes of incipient yielding are dependent on the loading directions. The SiNWs under tensile loading slip in {111} surfaces, while the compressive loading leads the SiNWs to slip in the {110} surfaces. The present results are expected to contribute to the design of the silicon devices in nanosystems.
Resumo:
Abstract. The atomic motion is coupled by the fast and slow components due to the high frequency vibration of atoms and the low frequency deformation of atomic lattice, respectively. A two-step approximate method was presented to determine the atomic slow motion. The first step is based on the change of the location of the cold potential well bottom and the second step is based on the average of the appropriate slow velocities of the surrounding atoms. The simple tensions of one-dimensional atoms and two-dimensional atoms were performed with the full molecular dynamics simulations. The conjugate gradient method was employed to determine the corresponding location of cold potential well bottom. Results show that our two-step approximate method is appropriate to determine the atomic slow motion under the low strain rate loading. This splitting method may be helpful to develop more efficient molecular modeling methods and simulations pertinent to realistic loading conditions of materials.