909 resultados para coding complexity
Resumo:
This paper attempts to address the effectiveness of physical-layer network coding (PNC) on the throughput improvement for multi-hop multicast in random wireless ad hoc networks (WAHNs). We prove that the per session throughput order with PNC is tightly bounded as T((nvmR (n))-1) if m = O(R-2 (n)), where n is the total number of nodes, R(n) is the communication range, and m is the number of destinations for each multicast session. We also show that per-session throughput order with PNC is tight bounded as T(n-1), when m = O(R-2(n)). The results of this paper imply that PNC cannot improve the throughput order of multicast in random WAHNs, which is different from the intuition that PNC may improve the throughput order as it allows simultaneous signal access and combination.
Resumo:
In this paper, the implementation aspects and constraints of the simplest network coding (NC) schemes for a two-way relay channel (TWRC) composed of a user equipment (mobile terminal), an LTE relay station (RS) and an LTE base station (eNB) are considered in order to assess the usefulness of the NC in more realistic scenarios. The information exchange rate gain (IERG), the energy reduction gain (ERG) and the resource utilization gain (RUG) of the NC schemes with and without subcarrier division duplexing (SDD) are obtained by computer simulations. The usefulness of the NC schemes are evaluated for varying traffic load levels, the geographical distances between the nodes, the RS transmit powers, and the maximum numbers of retransmissions. Simulation results show that the NC schemes with and without SDD, have the throughput gains 0.5% and 25%, the ERGs 7 - 12% and 16 - 25%, and the RUGs 0.5 - 3.2%, respectively. It is found that the NC can provide performance gains also for the users at the cell edge. Furthermore, the ERGs of the NC increase with the transmit power of the relay while the ERGs of the NC remain the same even when the maximum number of retransmissions is reduced.
Resumo:
This paper attempts to address the effectiveness of physical-layer network coding (PNC) on the capacity improvement for multi-hop multicast in random wireless ad hoc networks (WAHNs). While it can be shown that there is a capacity gain by PNC, we can prove that the per session throughput capacity with PNC is ? (nR(n))), where n is the total number of nodes, R(n) is the communication range, and each multicast session consists of a constant number of sinks. The result implies that PNC cannot improve the capacity order of multicast in random WAHNs, which is different from the intuition that PNC may improve the capacity order as it allows simultaneous signal reception and combination. Copyright © 2010 ACM.
Resumo:
A main unsolved problem in the RNA World scenario for the origin of life is how a template-dependent RNA polymerase ribozyme emerged from short RNA oligomers obtained by random polymerization on mineral surfaces. A number of computational studies have shown that the structural repertoire yielded by that process is dominated by topologically simple structures, notably hairpin-like ones. A fraction of these could display RNA ligase activity and catalyze the assembly of larger, eventually functional RNA molecules retaining their previous modular structure: molecular complexity increases but template replication is absent. This allows us to build up a stepwise model of ligation- based, modular evolution that could pave the way to the emergence of a ribozyme with RNA replicase activity, step at which information-driven Darwinian evolution would be triggered. Copyright © 2009 RNA Society.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
One developing theme in consciousness research is that consciousness is not the product of any specific component of the brain, rather it is an emergent property of the changing patterns of connectivity between different specialised functional components. For example, the dynamic core hypothesis proposes that conscious experience requires high levels of neural complexity, where complexity is defined in terms of functional connectivity. To test this hypothesis, electroencephalography was recorded while participants were shown random dot-stereograms. Consistent with the dynamic core hypothesis, neural complexity increased as the participants changed from simply viewing the stereogram to consciously perceiving the hidden 3D image.
Resumo:
Novel molecular complexity measures are designed based on the quantum molecular kinematics. The Hamiltonian matrix constructed in a quasi-topological approximation describes the temporal evolution of the modelled electronic system and determined the time derivatives for the dynamic quantities. This allows to define the average quantum kinematic characteristics closely related to the curvatures of the electron paths, particularly, the torsion reflecting the chirality of the dynamic system. A special attention has been given to the computational scheme for this chirality measure. The calculations on realistic molecular systems demonstrate reasonable behaviour of the proposed molecular complexity indices.
Resumo:
We present information-theory analysis of the tradeoff between bit-error rate improvement and the data-rate loss using skewed channel coding to suppress pattern-dependent errors in digital communications. Without loss of generality, we apply developed general theory to the particular example of a high-speed fiber communication system with a strong patterning effect. © 2007 IEEE.
Resumo:
The simulated classical dynamics of a small molecule exhibiting self-organizing behavior via a fast transition between two states is analyzed by calculation of the statistical complexity of the system. It is shown that the complexity of molecular descriptors such as atom coordinates and dihedral angles have different values before and after the transition. This provides a new tool to identify metastable states during molecular self-organization. The highly concerted collective motion of the molecule is revealed. Low-dimensional subspaces dynamics is found sensitive to the processes in the whole, high-dimensional phase space of the system. © 2004 Wiley Periodicals, Inc.
Resumo:
Leu-Enkephalin in explicit water is simulated using classical molecular dynamics. A ß-turn transition is investigated by calculating the topological complexity (in the "computational mechanics" framework [J. P. Crutchfield and K. Young, Phys. Rev. Lett., 63, 105 (1989)]) of the dynamics of both the peptide and the neighbouring water molecules. The complexity of the atomic trajectories of the (relatively short) simulations used in this study reflect the degree of phase space mixing in the system. It is demonstrated that the dynamic complexity of the hydrogen atoms of the peptide and almost all of the hydrogens of the neighbouring waters exhibit a minimum precisely at the moment of the ß-turn transition. This indicates the appearance of simplified periodic patterns in the atomic motion, which could correspond to high-dimensional tori in the phase space. It is hypothesized that this behaviour is the manifestation of the effect described in the approach to molecular transitions by Komatsuzaki and Berry [T. Komatsuzaki and R.S. Berry, Adv. Chem. Phys., 123, 79 (2002)], where a "quasi-regular" dynamics at the transition is suggested. Therefore, for the first time, the less chaotic character of the folding transition in a realistic molecular system is demonstrated. © Springer-Verlag Berlin Heidelberg 2006.