980 resultados para cleaning of contaminated soil


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanical chiseling has been used to alleviate the effects of compaction in soils under no-tillage (NT). However, its effect on the soil physical properties does not seem to have a defined duration period. The purpose of this study was to evaluate the behavior of the bulk density (BD) and degree of compaction (DC) at different soil depths, after chiseling in no-tillage, for one year. The experiment was performed in Ponta Grossa, Paraná State, Brazil, using an Oxisol (Rhodic Hapludox). Bulk density and DC were previously measured in an area under NT for 16 years, then immediately after chiseling (CHI) in May 2009, six months after chiseling (CHI6M) in October 2009 and one year after chiseling (CHI12M) in May 2010. In the layers 0.0-0.10, 0.10-0.20 and 0.20-0.30 m, there was a significant BD reduction CHI and a marked increase CHI6M. The BD values measured CHI12M were similar to those before tillage. Chiseling reduced the DC in the layers 0.0-0.10 m and 0.10-0.20 m, but returned to the initial values one year later. During the evaluation periods CHI, CHI6M and CHI12M, the BD increased in the layer 0.30-0.40 m, compared with NT. The highest DC values were observed six months after chiseling; nevertheless the structural recovery of the soil was considerable, possibly due to the high degree of soil resilience and the influence of the wetting and drying cycles detected in the study period. The chiseling effects, evaluated by BD and DC, lasted less than one year, i.e., the beneficial short-term effects of chiseling on the reduction of the surface BD increased the risk of compaction in deeper soil layers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The expansion of Brazilian agriculture has led to a heavy dependence on imported fertilizers to ensure the supply of the growing food demand. This fact has contributed to a growing interest in alternative nutrient sources, such as ground silicate rocks. It is necessary, however, to know the potential of nutrient release and changes these materials can cause in soils. The purpose of this study was to characterize six silicate rocks and evaluate their effects on the chemical properties of treated soil, assessed by chemical extractants after greenhouse incubation. The experimental design consisted of completely randomized plots, in a 3 x 6 factorial scheme, with four replications. The factors were potassium levels (0-control: without silicate rock application; 200; 400; 600 kg ha-1 of K2O), supplied as six silicate rock types (breccia, biotite schist, ultramafic rock, phlogopite schist and two types of mining waste). The chemical, physical and mineralogical properties of the alternative rock fertilizers were characterized. Treatments were applied to a dystrophic Red-Yellow Oxisol (Ferralsol), which was incubated for 100 days, at 70 % (w/w) moisture in 3.7 kg/pots. The soil was evaluated for pH; calcium and magnesium were extracted with KCl 1 mol L-1; potassium, phosphorus and sodium by Mehlich 1; nickel, copper and zinc with DTPA; and the saturation of the cation exchange capacity was calculated for aluminum, calcium, magnesium, potassium, and sodium, and overall base saturation. The alternative fertilizers affected soil chemical properties. Ultramafic rock and Chapada mining byproduct (CMB) were the silicate rocks that most influenced soil pH, while the mining byproduct (MB) led to high K levels. Zinc availability was highest in the treatments with mining byproduct and Cu in soil fertilized with Chapada and mining byproduct.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gypsum application may enhance the soil quality for plants in terms of soil chemical and physical properties. The objective of this study was to evaluate the effects of gypsum application on the structural quality of a no-tillage Red Latosol. The experiment was initiated in September 2005 in Guarapuava-PR, with gypsum applications of 0; 4; 8; and 12 Mg ha-1 on the soil surface. In November 2009, two soil blocks were sampled from the 0-0.3 m layer for visual evaluation of the soil structure quality (Sq) and to determine the aggregate-tensile strength (ATS). Soil penetration resistance (PR) and gravimetric moisture (H%) of the 0-0.300 m layer were evaluated, and soil cores were collected (layers 0.000-0.075 and 0.075-0.150 m), to determine soil bulk density (BD), total soil porosity (TP), microporosity (Mi), and macroporosity (Ma). Data were subjected to analysis of regression at 5 %. No significant effects of gypsum application on ATS and H % of aggregates were observed, but for Sq, a quadratic effect (0.000-0.075 m) and linear increase (0.075-0.150 and 0.150-0.300 m) were stated, indicating soil quality decrease, although Sq remained mostly below 3.0, with good to intermediate soil quality. Soil PR increased with gypsum, but also remained below critical levels. No effect was observed for soil H % at the moment of PR determination on the field. The gypsum applications decreased BD in the 0.075-0.150 m layer, and increased PT and Ma, while in 0.000-0.075 m some Ma was converted to Mi, without affecting PT and BD. These last results indicate a gain in soil structural quality by gypsum applications, but the higher scores of soil structure and values of soil penetration resistance, though still below thresholds, should be monitored to prevent limitations to soil use in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The agricultural potential is generally assessed and managed based on a one-dimensional vision of the soil profile, however, the increased appreciation of sustainable production has stimulated studies on faster and more accurate evaluation techniques and methods of the agricultural potential on detailed scales. The objective of this study was to investigate the possibility of using soil magnetic susceptibility for the identification of landscape segments on a detailed scale in the region of Jaboticabal, São Paulo State. The studied area has two slope curvatures: linear and concave, subdivided into three landscape segments: upper slope (US, concave), middle slope (MS, linear) and lower slope (LS, linear). In each of these segments, 20 points were randomly sampled from a database with 207 samples forming a regular grid installed in each landscape segment. The soil physical and chemical properties, CO2 emissions (FCO2) and magnetic susceptibility (MS) of the samples were evaluated represented by: magnetic susceptibility of air-dried fine earth (MS ADFE), magnetic susceptibility of the total sand fraction (MS TS) and magnetic susceptibility of the clay fraction (MS Cl) in the 0.00 - 0.15 m layer. The principal component analysis showed that MS is an important property that can be used to identify landscape segments, because the correlation of this property within the first principal component was high. The hierarchical cluster analysis method identified two groups based on the variables selected by principal component analysis; of the six selected variables, three were related to magnetic susceptibility. The landscape segments were differentiated similarly by the principal component analysis and by the cluster analysis using only the properties with higher discriminatory power. The cluster analysis of MS ADFE, MS TS and MS Cl allowed the formation of three groups that agree with the segment division established in the field. The grouping by cluster analysis indicated MS as a tool that could facilitate the identification of landscape segments and enable the mapping of more homogeneous areas at similar locations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The region of greatest variability on soil maps is along the edge of their polygons, causing disagreement among pedologists about the appropriate description of soil classes at these locations. The objective of this work was to propose a strategy for data pre-processing applied to digital soil mapping (DSM). Soil polygons on a training map were shrunk by 100 and 160 m. This strategy prevented the use of covariates located near the edge of the soil classes for the Decision Tree (DT) models. Three DT models derived from eight predictive covariates, related to relief and organism factors sampled on the original polygons of a soil map and on polygons shrunk by 100 and 160 m were used to predict soil classes. The DT model derived from observations 160 m away from the edge of the polygons on the original map is less complex and has a better predictive performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An understanding of the role of organic nitrogen (N) pools in the N supply of eucalyptus plantations is essential for the development of strategies that maximize the efficient use of N for this crop. This study aimed to evaluate the distribution of organic N pools in different compartments of the soil-plant system and their contributions to the N supply in eucalyptus plantations at different ages (1, 3, 5, and 13 years). Three models were used to estimate the contributions of organic pools: Model I considered N pools contained in the litterfall, N pools in the soil microbial biomass and available soil N (mineral N); Model II considered the N pools in the soil, potentially mineralizable N and the export of N through wood harvesting; and Model III (N balance) was defined as the difference between the initial soil N pool (0-10 cm) and the export of N, taking the application of N fertilizer into account. Model I showed that N pools could supply 27 - 70 % of the N demands of eucalyptus trees at different ages. Model II suggested that the soil N pool may be sufficient for 4 - 5 rotations of 5 years. According to the N balance, these N pools would be sufficient to meet the N demands of eucalyptus for more than 15 rotations of 5 years. The organic pools contribute with different levels of N and together are sufficient to meet the N demands of eucalyptus for several rotations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The physical quality of Amazonian soils is relatively unexplored, due to the unique characteristics of these soils. The index of soil physical quality is a widely accepted measure of the structural quality of soils and has been used to specify the structural quality of some tropical soils, as for example of the Cerrado ecoregion of Brazil. The research objective was to evaluate the physical quality index of an Amazonian dystrophic Oxisol under different management systems. Soils under five managements were sampled in Paragominas, State of Pará: 1) a 20-year-old second-growth forest (Forest); 2) Brachiaria sp pasture; 3) four years of no-tillage (NT4.); 4) eight years of no-tillage (NT8); and 5) two years of conventional tillage (CT2). The soil samples were evaluated for bulk density, macro and microporosity and for soil water retention. The physical quality index of the samples was calculated and the resulting value correlated with soil organic matter, bulk density and porosity. The surface layers of all systems were more compacted than those of the forest. The physical quality of the soil was best represented by the relations of the S index to bulk density and soil organic matter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Successive applications of liquid swine waste to the soil can increase the contents of total organic carbon and nutrients and change acidity-related soil chemical properties. However, little information is available on the effects of swine waste application in solid form, as of swine deep-litter. The objective of this study was to evaluate alterations of organic carbon and acidity-related properties of a soil after eight years of pig slurry and deep-litter application. In the eighth year of a field experiment established in Braço do Norte, Santa Catarina (SC) on a sandy Typic Hapludalf samples were taken (layers 0-2.5; 2.5-5; 5-10; 10-15; 15-20 and 20-30 cm) from unfertilized plots and plots with pig slurry or deep-litter applications, providing the simple or double rate of N requirement of Zea mays and Avena strigosa in rotation. Soil total organic carbon, water pH, exchangeable Al, Ca and Mg, and cation exchange capacity (CECeffective and CECpH7.0), H+Al, base saturation, and aluminum saturation were measured. The application of pig slurry and deep-litter for eight years increased total organic carbon and CEC in all soil layers. The pig slurry and deep-litter applications reduced active acidity and aluminum saturation and increased base saturation down to a depth of 30 cm. Eight years of pig slurry application did not affect soil acidity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Incongruous management techniques have been associated with some significant loss of agricultural land to degradation in many parts of the world. Land degradation results in the alteration of physical, chemical and biological properties of the soil, thereby posing a serious threat to sustainable agricultural development. In this study, our objective is to evaluate the changes in a Cambisol structure under six land use systems using the load bearing capacity model. Sampling was conducted in Amazonas Region, Brazil, in the following land use: a) young secondary forest; b) old secondary forest; c) forest; d) pasture; e) cropping, and f) agroforestry. To obtain the load bearing capacity models the undisturbed soil samples were collected in those land use systems and subjected to the uniaxial compression test. These models were used to evaluate which land use system preserved or degraded the Cambisol structure. The results of the bulk density and total porosity of the soil samples were not adequate to quantify structural degradation in Cambisol. Using the forest topsoil level (0-0.03 m) as a reference, it was observed that pasture land use system was most severe in the degradation of the soil structure while the structure were most preserved under old secondary forest, cropping system and forest. At the subsoil level (0.10-0.13 m depth), the soil structure was most degraded in the cropping land use system while it was most preserved in young secondary forest and pasture. At the 0.20-0.23 m depth, soil structure degradation was most severe in the old secondary forest system and well preserved in young secondary forest, cropping and agroforestry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of a soil induces changes in the physical properties according to the management, tillage intensity and type of crop. The objective of this work was to measure the alterations of some of the soil physical properties and evaluate the physical quality by the S index, an indicator proposed by Dexter (2004), comparing the land uses: eucalyptus plantations at different ages, grazing pasture, annual crops, and an area of preserved secondary vegetation with an area of preserved native forest (National Forest Araripe - NFA) as control. The study was carried out on an Oxisol on the Fazenda Redenção, in Jardim, State of Ceará, Brazil. The experiment was arranged in a completely randomized design with seven treatments and three replications in the layers 0-0.1 and 0.1-0.2 m. The soil was analyzed for the following physical properties: bulk density, particle density, total pore volume, micro and macroporosity, soil water retention curves and water availability. Based on the S index, the hypothesis that the use of a soil deteriorates the physical quality was accepted. Clearly, native forest (NFA) was the land use with the best conditions in all physical properties studied, followed closely by the area reforested with 20 year-old eucalyptus. The use as grazing pasture affected the soil physical conditions most, especially in the surface layer (0-0.1 m), as evidenced by increased bulk density and a substantial reduction in soil porosity, mainly in macroporosity. Microporosity was not influenced by any of the uses and in any layer studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Considering that the soil aggregation reflects the interaction of chemical, physical and biological soil factors, the aim of this study was evaluate alterations in aggregation, in an Oxisol under no-tillage (NT) and conventional tillage (CT), since over 20 years, using as reference a native forest soil in natural state. After analysis of the soil profile (cultural profile) in areas under forest management, samples were collected from the layers 0-5, 5-10, 10-20 and 20-40 cm, with six repetitions. These samples were analyzed for the aggregate stability index (ASI), mean weighted diameter (MWD), mean geometric diameter (MGD) in the classes > 8, 8-4, 4-2, 2-1, 1-0.5, 0.5-0.25, and < 0.25 mm, and for physical properties (soil texture, water dispersible clay (WDC), flocculation index (FI) and bulk density (Bd)) and chemical properties (total organic carbon - COT, total nitrogen - N, exchangeable calcium - Ca2+, and pH). The results indicated that more intense soil preparation (M < NT < PC) resulted in a decrease in soil stability, confirmed by all stability indicators analyzed: MWD, MGD, ASI, aggregate class distribution, WDC and FI, indicating the validity of these indicators in aggregation analyses of the studied soil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies on microbial activity and biomass in forestry plantations often overlook the role of litter, typically focusing instead on soil nutrient contents to explain plant and microorganism development. However, since the litter is a significant source of recycled nutrients that affect nutrient dynamics in the soil, litter composition may be more strongly correlated with forest growth and development than soil nutrient contents. This study aimed to test this hypothesis by examining correlations between soil C, N, and P; litter C, N, P, lignin content, and polyphenol content; and microbial biomass and activity in pure and mixed second-rotation plantations of Eucalyptus grandis and Acacia mangium before and after senescent leaf drop. The numbers of cultivable fungi and bacteria were also estimated. All properties were correlated with litter C, N, P, lignin and polyphenols, and with soil C and N. We found higher microbial activity (CO2 evolution) in litter than in soil. In the E. grandis monoculture before senescent leaf drop, microbial biomass C was 46 % higher in litter than in soil. After leaf drop, this difference decreased to 16 %. In A. mangium plantations, however, microbial biomass C was lower in litter than in soil both before and after leaf drop. Microbial biomass N of litter was approximately 94 % greater than that of the soil in summer and winter in all plantations. The number of cultivable fungi and bacteria increased after leaf drop, especially so in the litter. Fungi were also more abundant in the E. grandis litter. In general, the A. mangium monoculture was associated with higher levels of litter lignin and N, especially after leaf drop. In contrast, the polyphenol and C levels in E. grandis monoculture litter were higher after leaf drop. These properties were negatively correlated with total soil C and N. Litter in the mixed stands had lower C:N and C:P ratios and higher N, P, and C levels in the microbial biomass. This suggests more effective nutrient cycling in mixed plantations in the long term, greater stimulation of microbial activity in litter and soil, and a more sustainable system in general.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Successive applications of pig slurry to soils under no-tillage can increase the nutrient levels in the uppermost soil layers and part of the nutrients may be transferred to deeper layers. The objective was to evaluate the distribution of nutrients in the profile of a soil after 19 pig slurry applications under no-tillage for 93 months. The experiment was conducted from May 2000 to January 2008 in an experimental area of the Federal University of Santa Maria, southern Brazil, on a Typic Hapludalf. The treatments consisted of pig slurry applications (0, 20, 40 and 80 m³ ha-1) and at the end of the experiment, soil samples were collected (layers 0-2, 2-4, 4-6, 6-8, 8-10, 10-12, 12-14, 14-16, 16-18, 18-20, 20-25, 25-30, 30-35, 35-40, 40-50 and 50-60 cm). The levels of mineral N, available P and K and total N, P and K were evaluated. The 19 pig slurry applications in 93 months promoted migration of total N and P down to 30 cm and available P and K to the deepest layer analyzed. At the end of the experiment, no increase was observed in mineral N content in the deeper layers, but increased levels of available P and K, showing a transfer of N, P and K to layers below the sampled. This evidences undesirable environmental and economic consequences of the use of pig slurry and reinforces the need for a more rational use, i.e., applications of lower manure doses, combined with mineral fertilizers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rainfall erosivity is one of the main factors related to water erosion in the tropics. This work focused on relating soil loss from a typic dystrophic Tb Haplic Cambisol (CXbd) and a typic dystrophic Red Latosol (LVdf) to different patterns of natural erosive rainfall. The experimental plots of approximately 26 m² (3 x 8.67 m) consisted of a CXbd area with a 0.15 m m-1 slope and a LVdf area with 0.12 m m-1 slope, both delimited by galvanized plates. Drainpipes were installed at the lower part of these plots to collect runoff, interconnected with a Geib or multislot divisor. To calculate erosivity (EI30), rainfall data, recorded continuously at a weather station in Lavras, were used. The data of erosive rainfall events were measured (10 mm precipitation intervals, accuracy 0.2 mm, 24 h period, 20 min intervals), characterized as rainfall events with more than 10 mm precipitation, maximum intensity > 24 mm h-1 within 15 min, or kinetic energy > 3.6 MJ, which were used in this study to calculate the rainfall erosivity parameter, were classified according to the moment of peak precipitation intensity in advanced, intermediate and delayed patterns. Among the 139 erosive rainfall events with CXbd soil loss, 60 % were attributed to the advanced pattern, with a loss of 415.9 Mg ha-1, and total losses of 776.0 Mg ha-1. As for the LVdf, of the 93 erosive rainfall events with soil loss, 58 % were listed in the advanced pattern, with 37.8 Mg ha-1 soil loss and 50.9 Mg ha-1 of total soil loss. The greatest soil losses were observed in the advanced rain pattern, especially for the CXbd. From the Cambisol, the soil loss per rainfall event was greatest for the advanced pattern, being influenced by the low soil permeability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although the influence of clay mineralogy on soil physical properties has been widely studied, spatial relationships between these features in Alfisols have rarely been examined. The purpose of this work was to relate the clay minerals and physical properties of an Alfisol of sandstone origin in two slope curvatures. The crystallographic properties such as mean crystallite size (MCS) and width at half height (WHH) of hematite, goethite, kaolinite and gibbsite; contents of hematite and goethite; aluminium substitution (AS) and specific surface area (SSA) of hematite and goethite; the goethite/(goethite+hematite) and kaolinite/(kaolinite+gibbsite) ratios; and the citrate/bicarbonate/dithionite extractable Fe (Fe d) were correlated with the soil physical properties through Pearson correlation coefficients and cross-semivariograms. The correlations found between aluminium substitution in goethite and the soil physical properties suggest that the degree of crystallinity of this mineral influences soil properties used as soil quality indicators. Thus, goethite with a high aluminium substitution resulted in large aggregate sizes and a high porosity, and also in a low bulk density and soil penetration resistance. The presence of highly crystalline gibbsite resulted in a high density and micropore content, as well as in smaller aggregates. Interpretation of the cross-semivariogram and classification of landscape compartments in terms of the spatial dependence pattern for the relief-dependent physical and mineralogical properties of the soil proved an effective supplementary method for assessing Pearson correlations between the soil physical and mineralogical properties.