933 resultados para chondrocyte hypertrophy
Resumo:
[EN] There is a substantial body of evidence indicating that exercise prior to the pubertal growth spurt stimulates bone growth and skeletal muscle hypertrophy to a greater degree than observed during growth in non-physically active children. Bone mass can be increased by some exercise programmes in adults and the elderly, and attenuate the losses in bone mass associated with aging. This review provides an overview of cross-sectional and longitudinal studies performed to date involving training and bone measurements. Cross-sectional studies show in general that exercise modalities requiring high forces and/or generating high impacts have the greatest osteogenic potential. Several training methods have been used to improve bone mineral density (BMD) and content in prospective studies. Not all exercise modalities have shown positive effects on bone mass. For example, unloaded exercise such as swimming has no impact on bone mass, while walking or running has limited positive effects.
Resumo:
[EN] PURPOSE: To determine the volume and degree of asymmetry of the rectus abdominis muscle (RA) in professional soccer players. METHODS: The volume of the RA was determined using magnetic resonance imaging (MRI) in 15 professional male soccer players and 6 non-active male control subjects. RESULTS: Soccer players had 26% greater RA volume than controls (P<0.05), due to hypertrophy of both the dominant (28% greater volume, P<0.05) and non-dominant (25% greater volume, P<0.01) sides, after adjusting for age, length of the RA muscle and body mass index (BMI) as covariates. Total volume of the dominant side was similar to the contralateral in soccer players (P = 0.42) and in controls (P = 0.75) (Dominant/non-dominant = 0.99, in both groups). Segmental analysis showed a progressive increase in the degree of side-to-side asymmetry from the first lumbar disc to the pubic symphysis in soccer players (r = 0.80, P<0.05) and in controls (r = 0.75, P<0.05). The slope of the relationship was lower in soccer players, although this trend was not statistically significant (P = 0.14). CONCLUSIONS: Professional soccer is associated with marked hypertrophy of the rectus abdominis muscle, which achieves a volume that is 26% greater than in non-active controls. Soccer induces the hypertrophy of the non-dominant side in proximal regions and the dominant side in regions closer to pubic symphysis, which attenuates the pattern of asymmetry of rectus abdominis observed in non-active population. It remains to be determined whether the hypertrophy of rectus abdominis in soccer players modifies the risk of injury.
Resumo:
[EN] PURPOSE: To determine the volume and degree of asymmetry of iliopsoas (IL) and gluteal muscles (GL) in tennis and soccer players. METHODS: IL and GL volumes were determined using magnetic resonance imaging (MRI) in male professional tennis (TP) and soccer players (SP), and in non-active control subjects (CG) (n = 8, 15 and 6, respectively). RESULTS: The dominant and non-dominant IL were hypertrophied in TP (24 and 36%, respectively, P<0.05) and SP (32 and 35%, respectively, P<0.05). In TP the asymmetric hypertrophy of IL (13% greater volume in the non-dominant than in the dominant IL, P<0.01) reversed the side-to-side relationship observed in CG (4% greater volume in the dominant than in the contralateral IL, P<0.01), whilst soccer players had similar volumes in both sides (P = 0.87). The degree of side-to-side asymmetry decreased linearly from the first lumbar disc to the pubic symphysis in TP (r = -0.97, P<0.001), SP (r = -0.85, P<0.01) and CG (r = -0.76, P<0.05). The slope of the relationship was lower in SP due to a greater hypertrophy of the proximal segments of the dominant IL. Soccer and CG had similar GL volumes in both sides (P = 0.11 and P = 0.19, for the dominant and contralateral GL, respectively). GL was asymmetrically hypertrophied in TP. The non-dominant GL volume was 20% greater in TP than in CG (P<0.05), whilst TP and CG had similar dominant GL volumes (P = 0.14). CONCLUSIONS: Tennis elicits an asymmetric hypertrophy of IL and reverses the normal dominant-to-non-dominant balance observed in non-active controls, while soccer is associated to a symmetric hypertrophy of IL. Gluteal muscles are asymmetrically hypertrophied in TP, while SP display a similar size to that observed in controls. It remains to be determined whether the different patterns of IL and GL hypertrophy may influence the risk of injury.
Resumo:
This work is structured as follows: In Section 1 we discuss the clinical problem of heart failure. In particular, we present the phenomenon known as ventricular mechanical dyssynchrony: its impact on cardiac function, the therapy for its treatment and the methods for its quantification. Specifically, we describe the conductance catheter and its use for the measurement of dyssynchrony. At the end of the Section 1, we propose a new set of indexes to quantify the dyssynchrony that are studied and validated thereafter. In Section 2 we describe the studies carried out in this work: we report the experimental protocols, we present and discuss the results obtained. Finally, we report the overall conclusions drawn from this work and we try to envisage future works and possible clinical applications of our results. Ancillary studies that were carried out during this work mainly to investigate several aspects of cardiac resynchronization therapy (CRT) are mentioned in Appendix. -------- Ventricular mechanical dyssynchrony plays a regulating role already in normal physiology but is especially important in pathological conditions, such as hypertrophy, ischemia, infarction, or heart failure (Chapter 1,2.). Several prospective randomized controlled trials supported the clinical efficacy and safety of cardiac resynchronization therapy (CRT) in patients with moderate or severe heart failure and ventricular dyssynchrony. CRT resynchronizes ventricular contraction by simultaneous pacing of both left and right ventricle (biventricular pacing) (Chapter 1.). Currently, the conductance catheter method has been used extensively to assess global systolic and diastolic ventricular function and, more recently, the ability of this instrument to pick-up multiple segmental volume signals has been used to quantify mechanical ventricular dyssynchrony. Specifically, novel indexes based on volume signals acquired with the conductance catheter were introduced to quantify dyssynchrony (Chapter 3,4.). Present work was aimed to describe the characteristics of the conductancevolume signals, to investigate the performance of the indexes of ventricular dyssynchrony described in literature and to introduce and validate improved dyssynchrony indexes. Morevoer, using the conductance catheter method and the new indexes, the clinical problem of the ventricular pacing site optimization was addressed and the measurement protocol to adopt for hemodynamic tests on cardiac pacing was investigated. In accordance to the aims of the work, in addition to the classical time-domain parameters, a new set of indexes has been extracted, based on coherent averaging procedure and on spectral and cross-spectral analysis (Chapter 4.). Our analyses were carried out on patients with indications for electrophysiologic study or device implantation (Chapter 5.). For the first time, besides patients with heart failure, indexes of mechanical dyssynchrony based on conductance catheter were extracted and studied in a population of patients with preserved ventricular function, providing information on the normal range of such a kind of values. By performing a frequency domain analysis and by applying an optimized coherent averaging procedure (Chapter 6.a.), we were able to describe some characteristics of the conductance-volume signals (Chapter 6.b.). We unmasked the presence of considerable beat-to-beat variations in dyssynchrony that seemed more frequent in patients with ventricular dysfunction and to play a role in discriminating patients. These non-recurrent mechanical ventricular non-uniformities are probably the expression of the substantial beat-to-beat hemodynamic variations, often associated with heart failure and due to cardiopulmonary interaction and conduction disturbances. We investigated how the coherent averaging procedure may affect or refine the conductance based indexes; in addition, we proposed and tested a new set of indexes which quantify the non-periodic components of the volume signals. Using the new set of indexes we studied the acute effects of the CRT and the right ventricular pacing, in patients with heart failure and patients with preserved ventricular function. In the overall population we observed a correlation between the hemodynamic changes induced by the pacing and the indexes of dyssynchrony, and this may have practical implications for hemodynamic-guided device implantation. The optimal ventricular pacing site for patients with conventional indications for pacing remains controversial. The majority of them do not meet current clinical indications for CRT pacing. Thus, we carried out an analysis to compare the impact of several ventricular pacing sites on global and regional ventricular function and dyssynchrony (Chapter 6.c.). We observed that right ventricular pacing worsens cardiac function in patients with and without ventricular dysfunction unless the pacing site is optimized. CRT preserves left ventricular function in patients with normal ejection fraction and improves function in patients with poor ejection fraction despite no clinical indication for CRT. Moreover, the analysis of the results obtained using new indexes of regional dyssynchrony, suggests that pacing site may influence overall global ventricular function depending on its relative effects on regional function and synchrony. Another clinical problem that has been investigated in this work is the optimal right ventricular lead location for CRT (Chapter 6.d.). Similarly to the previous analysis, using novel parameters describing local synchrony and efficiency, we tested the hypothesis and we demonstrated that biventricular pacing with alternative right ventricular pacing sites produces acute improvement of ventricular systolic function and improves mechanical synchrony when compared to standard right ventricular pacing. Although no specific right ventricular location was shown to be superior during CRT, the right ventricular pacing site that produced the optimal acute hemodynamic response varied between patients. Acute hemodynamic effects of cardiac pacing are conventionally evaluated after stabilization episodes. The applied duration of stabilization periods in most cardiac pacing studies varied considerably. With an ad hoc protocol (Chapter 6.e.) and indexes of mechanical dyssynchrony derived by conductance catheter we demonstrated that the usage of stabilization periods during evaluation of cardiac pacing may mask early changes in systolic and diastolic intra-ventricular dyssynchrony. In fact, at the onset of ventricular pacing, the main dyssynchrony and ventricular performance changes occur within a 10s time span, initiated by the changes in ventricular mechanical dyssynchrony induced by aberrant conduction and followed by a partial or even complete recovery. It was already demonstrated in normal animals that ventricular mechanical dyssynchrony may act as a physiologic modulator of cardiac performance together with heart rate, contractile state, preload and afterload. The present observation, which shows the compensatory mechanism of mechanical dyssynchrony, suggests that ventricular dyssynchrony may be regarded as an intrinsic cardiac property, with baseline dyssynchrony at increased level in heart failure patients. To make available an independent system for cardiac output estimation, in order to confirm the results obtained with conductance volume method, we developed and validated a novel technique to apply the Modelflow method (a method that derives an aortic flow waveform from arterial pressure by simulation of a non-linear three-element aortic input impedance model, Wesseling et al. 1993) to the left ventricular pressure signal, instead of the arterial pressure used in the classical approach (Chapter 7.). The results confirmed that in patients without valve abnormalities, undergoing conductance catheter evaluations, the continuous monitoring of cardiac output using the intra-ventricular pressure signal is reliable. Thus, cardiac output can be monitored quantitatively and continuously with a simple and low-cost method. During this work, additional studies were carried out to investigate several areas of uncertainty of CRT. The results of these studies are briefly presented in Appendix: the long-term survival in patients treated with CRT in clinical practice, the effects of CRT in patients with mild symptoms of heart failure and in very old patients, the limited thoracotomy as a second choice alternative to transvenous implant for CRT delivery, the evolution and prognostic significance of diastolic filling pattern in CRT, the selection of candidates to CRT with echocardiographic criteria and the prediction of response to the therapy.
Resumo:
Introduction: Apoptotic cell death of cardiomyocytes is involved in several cardiovascular diseases including ischemia, hypertrophy and heart failure, thus representing a potential therapeutic target. Apoptosis of cardiac cells can be induced experimentally by several stimuli including hypoxia, serum withdrawal or combination of both. Several lines of research suggest that neurohormonal mechanisms play a central role in the progression of heart failure. In particular, excessive activation of the sympathetic nervous system or the renin-angiotensin-aldosterone system is known to have deleterious effects on the heart. Recent studies report that norepinephrine (NE), the primary transmitter of sympathetic nervous system, and aldosterone (ALD), which is actively produced in failing human heart, are able to induce apoptosis of rat cardiomyocytes. Polyamines are biogenic amines involved in many cellular processes, including apoptosis. Actually it appears that these molecules can act as promoting, modulating or protective agents in apoptosis depending on apoptotic stimulus and cellular model. We have studied the involvement of polyamines in the apoptosis of cardiac cells induced in a model of simulated ischemia and following treatment with NE or ALD. Methods: H9c2 cardiomyoblasts were exposed to a condition of simulated ischemia, consisting of hypoxia plus serum deprivation. Cardiomyocyte cultures were prepared from 1-3 day-old neonatal Wistar rat hearts. Polyamine depletion was obtained by culturing the cells in the presence of α-difluoromethylornithine (DFMO). Polyamines were separated and quantified in acidic cellular extracts by HPLC after derivatization with dansyl chloride. Caspase activity was measured by the cleavage of the fluorogenic peptide substrate. Ornithine decarboxylase (ODC) activity was measured by estimation of the release of 14C-CO2 from 14C-ornithine. DNA fragmentation was visualized by the method of terminal transferase-mediated dUTP nick end-labeling (TUNEL), and DNA laddering on agarose gel electophoresis. Cytochrome c was detected by immunoflorescent staining. Activation of signal transduction pathways was investigated by western blotting. Results: The results indicate that simulated ischemia, NE and ALD cause an early induction of the activity of ornithine decarboxylase (ODC), the first enzyme in polyamine biosynthesis, followed by a later increase of caspase activity, a family of proteases that execute the death program and induce cell death. This effect was prevented in the presence of DFMO, an irreversible inhibitor of ODC, thus suggesting that polyamines are involved in the execution of the death program activated by these stimuli. In H9c2 cells DFMO inhibits several molecular events related to apoptosis that follow simulated ischemia, such as the release of cytochrome c from mitochondria, down-regulation of Bcl-xL, and DNA fragmentation. The anti-apoptotic protein survivin is down-regulated after ALD or NE treatement and polyamine depletion obtained by DFMO partially opposes survivin decrease. Moreover, a study of key signal transduction pathways governing cell death and survival, revealed an involvement of AMP activated protein kinase (AMPK) and AKT kinase, in the modulation by polyamines of the response of cardiomyocytes to NE. In fact polyamine depleted cells show an altered pattern of AMPK and AKT activation that may contrast apoptosis and appears to result from a differential effect on the specific phosphatases that dephosphorylate and switch off these signaling proteins. Conclusions: These results indicate that polyamines are involved in the execution of the death program activated in cardiac cells by heart failure-related stimuli, like ischemia, ALD and NE, and suggest that their apoptosis facilitating action is mediated by a network of specific phosphatases and kinases.
Resumo:
The main work involved the PMWS (Post-weaning multisystemic Wasting Syndrome), caused by PCV-2 (Porcine Circovirus type 2) that involved post-weaned pigs. Merial Italy has funded a study activity in which groups of 3-5 animals were sampled for lungs, tracheo-bronchial and superficial inguinal lymph nodes, ileum and tonsils. The protocol applied can be identified as a more diagnostic potential on the individual than on the group. PNP. Another investigation has been conducted to study proliferative and necrotizing pneumonia (PNP), a form of interstitial pneumonia in weaning and post-weaning pigs characterized by hypertrophy and hyperplasia of type II pneumocytes, coagulative necrosis and granular debris within alveolar spaces. Many studies suggest porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) as the main causes of the disease, but Aujeszky disease virus (ADV) and swine influenza virus (SIV) are also considered. An immunohistochemical study was carried out to evaluate the role of these viruses in PNP lesions in Italy. PNP results primarily associated with PRRSV, even if co-infection is characterized by more severe histological features. Reproductive pathology. A major risk factor for PCV2 infection is a viraemic episode taking place in pregnant sows with low antibody titer which is transmitted by specific PCV2 products of conception. PCV2 can infect the fetus even by vehicles through infected semen or ova, or as a result of infection of the genital tract. An investigation was carried out to identify the presence and localization of PCV2 in the genital tracts of sows experimentally infected with PCV2 and in their fetuses. The results obtained suggest that: conventional sows can be infected by intrauterine exposition; low antibody titres increase the probability of infection; PCV2 infection close to insemination time reduces the pregnancy rate; placental lesions may represent an additional cause of fetal suffering.
Resumo:
The exact mechanisms of the exercise induced adaptations is not lucid, but recent studies have delineated two means of signaling by which the adaptations occur (1) substrate availability signaling (metabolic stress) (2) hormone-receptor signaling. We have decided to specifically investigate two metabolic signaling enzymes [AMP-activated kinase (AMPK) and Sirtuin 1(SIRT1)] and two hormones [Adiponectin and Adrenergic stimulation].Tis based on four papers with the following conclusions: (1)Increase in SIRT1 activity and expression in H9c2 cells treated with phenylephrine is an adaptive response to the hypertrophic stress, mediated by AMPK. (2)The lack of optimal nutritional conditions (energetic substrates) due to a prolonged activation of AMPK can contrast the establishment of hypertrophy, possibly also by means of the negative modulation of ODC activity. (3) Our findings offer a possibile hypothesis as to the fact the the G allele on site 45 could lead to the increasd risk of Type II diabetes through a decrease in lean body mass. (4) Our results suggest that there is an ADIPOQ gene effect in relation to bone parameters. Statistical analysis show that the presence of the T allele in position 45 favors an increase in lumbar spine bone mineral content (BMC) when compared to subjects with a G allele substitution, which can be do the the increase in lean body mass in this genotype group.
Resumo:
Background: Intestinal fibrosis is a serious complication of IBD, with more than a third of Crohn’s disease (CD) patients developing a fibrostenosing phenotype with formation of strictures that will require surgical intervention. Remarkably, SAMP1/YitFc (SAMP) mice, a spontaneous model of CD, develop gut fibrosis; similar to IBD patients, the pathophysiology of SAMP fibrosis is unknown. IL-33 is a member of the IL-1 cytokine family and increased expression is associated with IBD. Emerging evidence suggests its potential role in liver and cutaneous fibrosis, as well as myofibroblast-associated colonic ulcerations . Aim: The aim of this study was to evaluate the role of IL-33 as a potential mediator of profibrotic events leading to intestinal fibrosis and possible stricture formation. Methods: A detailed histologic time course study, with collagen-specific Masson trichrome staining and IHC for ST2 (IL-33 receptor), was performed on SAMP and control AKR (parental strain) mice. qRT-PCR was done on full-thickness ilea for the profibrogenic genes, collagen (coll)-1, coll-3, connective tissue growth factor (CTGF) and insulin-like growth factor 1 (IGF-1). Exogenous IL-33 (33 μg/kg, i.p.) or vehicle was administered daily for 7d to SAMP and AKR mice (N=6/exp group), and ileal tissues evaluated as above. Finally, microarray analysis was performed on full-thickness ilea from SAMP and AKR mice, and IL-33 stimulated subepithelial myofibroblasts (SEMFs). Results: SAMP mice displayed ileal skip lesions with randomly distributed strictures, preceded by typical pre-stricture dilations of the ileum. Ileal wall was visibly thickened with hypertrophy of the serosa, muscularis mucosa, muscularis propria, within which intense collagen deposition was observed, and inflammatory infiltrates in segments showing strictures. Interestingly, intense ST2 staining was present within the inflamed lamina propria of SAMP, notably localized to SEMFs. Fibrosis was first observed at 20 wks, and reached its peak by 50 wks of age. mRNA expression of coll-1 (4.74±0.69-fold; P=0.001), coll-3 (4.92±1.05-fold; P=0.01), IGF1 (12.9±3.45; P=0.006), and CTGF (3.29±0.69; P=0.004) was dramatically elevated in SAMP vs. AKR ilea. IL-33 treatment of AKR mice induced a marked increase in muscle fiber/myofibroblast cellularity and hypertrophy of the muscularis propria (4.13±0.74-fold; P<0.0001), and mRNA expression of coll-1 (5.16±0.89-fold; P=0.0009), coll-3 (1.97±0.14-fold; P=0.01), IGF-1 (9.32±2.27-fold; P=0.004), and CTGF (1.43±0.31-fold; P=0.006) vs. vehicle controls. Microarray data from SAMP ilea and IL-33-treated SEMFs confirmed these trends, displaying a global increase in profibrogenic gene expression. Conclusion: These data suggest an important role for IL-33 in intestinal fibrosis, and may represent a potential target for the treatment of IBD-associated fibrosis and stricture formation.
Resumo:
Background: Cardiovascular disease (CVD) is a common cause of morbidity and mortality in childhood chronic kidney disease (CKD). Left ventricular hypertrophy (LVH) is known to be one of the earliest events in CVD development. Left ventricular diastolic function (DF) is thought to be also impaired in children with CKD. Tissue Doppler imaging (TDI) provide an accurate measure of DF and is less load dependent than conventional ECHO. Aim: To evaluate the LV mass and the DF in a population of children with CKD. Methods: 37 patients, median age: 10.4 (3.3-19.8); underlying renal disease: hypo/dysplasia (N=28), nephronophthisis (N=4), Alport (N=2), ARPKD (N=3), were analyzed. Thirty-eight percent of the patients were on stage 1-2 of CKD, 38% on stage 3, 16% on stage 4. Three patients were on dialysis. The most frequent factors related to CVD in CKD have been studied. LVH has been defined as a left ventricular mass index (LVMI) more than 35.7 g/h2,7. Results: Twenty-five patients (81%) had a LVH. LVMI and diastolic function index (E’/A’) were significantly related to the glomerular filtration rate (p<0.003 and p<0.004). Moreover the LVMI was correlated with the phosphorus and the hemoglobin level (p<0.0001 and p<0.004). LVH was present since the first stages of CKD (58% of patients were on stages 1-2). Early-diastolic myocardial velocity was reduced in 73% of our patients. We didn’t find any correlation between LVH and systemic hypertension. Conclusion: ECHO evaluation with TDI is suggested also in children prior to dialysis and with a normal blood pressure. If LVH is diagnosed, a periodic follow-up is necessary with the treatment of the modifiable risk factors (hypertension, disturbances of calcium, phosphorus and PTH, anemia ).
Resumo:
Background. Hereditary transthyretin (TTR)-related amyloidosis (ATTR) is mainly considered a neurologic disease. We assessed the phenotypic and genotypic spectrum of ATTR in a non-endemic, Caucasian area and evaluated prevalence, genetic background and disease profile of cases with an exclusively cardiac phenotype, highlighting possible hints for the differential diagnosis with hypertrophic cardiomyopathy (HCM) and senile systemic amyloidosis (SSA) Methods and Results. In this Italian multicenter study, 186 patients with ATTR were characterized at presentation. Thirty patients with SSA and 30 age-gender matched HCM patients were used for comparison. Phenotype was classified as: exclusively cardiac (n= 31, 17%), exclusively neurologic (n= 46, 25%), mixed cardiac/neurologic (n=109, 58%). Among the 8 different mutations responsible for an exclusively cardiac phenotype, Ile68Leu was the most frequent (23/31). Five patients with an exclusively cardiac phenotype developed mild abnormalities at neurological examination but no symptoms during a 36 [14−50] month follow-up. Exclusively cardiac phenotype was characterized by male gender, age > 65 years, heart failure symptoms, concentric left ventricular (LV) “hypertrophy” and moderately depressed LV ejection fraction. This profile was similar to SSA but relatively distinct from HCM. Compared to patients with a mixed phenotype, patients with a exclusively cardiac phenotype showed a more pronounced cardiac involvement on both echocardiogram and ECG. Conclusion. A clinically relevant subset of Caucasian ATTR patients present with an exclusively cardiac phenotype, mimicking HCM or SSA. Echocardiographic and ECG findings are useful to differentiate ATTR from HCM but not from SSA. The role of liver transplantation in these patients is questionable.
Resumo:
Neueste Arbeiten zeigen, dass Mastzellen wichtige Funktionen innerhalb des angeborenen und erworbenen Immunsystems ausüben. Von zentraler Bedeutung ist hierbei die Fähigkeit der Mastzelle, auf IgE-unabhängige Signale zu reagieren und ein breites Spektrum an Cytokinen und Chemokinen zu produzieren. Transkriptionsfaktoren der NFAT-Familie sind wichtige Regulatoren der Immunhomöostase und Cytokinproduktion. In Mausmodellen führt die Defizienz des NFATc2 zu überschießenden Immunreaktionen, was ursächlich auf die Hyperreaktivität NFATc2-defizienter T-Zellen zurückgeführt wird. Demgegenüber zeigten unsere eigenen in vitro durchgeführten Arbeiten, dass die Produktion wichtiger entzündungsfördernder Cytokine in Mastzellen abhängig ist von NFATc2. Ziel der vorliegenden Arbeit war es, die Bedeutung von NFATc2 in einem Mastzell-abhängigen Modell der transkutanen Immunisierung mit einem TLR7-Liganden als Adjuvans zu untersuchen. Experimente an NFATc2-defizienten Mäusen ergaben zunächst, dass die Schlüsselprozesse Entzündung, Auswanderung antigenpräsen-tierender Zellen, Lymphknotenhypertrophie sowie Expansion und Funktion spezifischer T-Zellen in Abwesenheit des Transkriptionsfaktors NFATc2 extrem beeinträchtigt sind. Dieser experimentell induzierte Phänotyp gleicht somit dem mastzellloser Mäuse in dieser Immunisierungsstudie. Rekonstitutionsexperimente erlaubten es, in vitro generierte Mastzellen aus NFATc2-defizienten und NFATc2-kompetenten Spendern in mastzelllose Mäuse zu transferieren und deren Reaktivität in dem angewandten TLR7-abhängigen Entzündungsmodell in vivo zu vergleichen. Hierbei zeigte sich, dass die in NFATc2-defizienten Mäusen nach transkutaner Immunisierung zu beobachtenden Beeinträchtigungen gänzlich auf die Abwesenheit des NFATc2 in Mastzellen zurückzuführen sind. Die Ergebnisse der vorliegenden Arbeit zeigen somit, dass der Transkriptionsfaktor NFATc2 für die Funktion der Mastzelle in vivo eine bedeutsame Rolle spielt. Dies betrifft sowohl Reaktionen des angeborenen als auch des erworbenen Immunsystems. Darüber hinaus könnte NFATc2 ein wichtiges Ziel bei therapeutischen Maßnahmen gegen mastzellabhängige Krankheiten darstellen.
Resumo:
Pulmonary arterial hypertension (PAH) is a progressive and rare disease with so far unclear pathogenesis, limited treatment options and poor prognosis. Unbalance of proliferation and migration in pulmonary arterial smooth muscle cells (PASMCs) is an important hallmark of PAH. In this research Sodium butyrate (BU) has been evaluated in vitro and in vivo models of PAH. This histone deacetylase inhibitor (HDACi) counteracted platelet-derived growth factor (PDGF)-induced ki67 expression in PASMCs, and arrested cell cycle mainly at G0/G1 phases. Furthermore, BU reduced the transcription of PDGFRbeta, and that of Ednra and Ednrb, two major receptors in PAH progression. Wound healing and pulmonary artery ring assays indicated that BU inhibited PDGF-induced PASMC migration. BU strongly inhibited PDGF-induced Akt phosphorylation, an effect reversed by the phosphatase inhibitor calyculinA. In vivo, BU showed efficacy in monocrotaline-induced PAH in rats. Indeed, the HDACi reduced both thickness of distal pulmonary arteries and right ventricular hypertrophy. Besides these studies, Serial Analysis of Gene Expression (SAGE) has be used to obtain complete transcriptional profiles of peripheral blood mononuclear cells (PBMCs) isolated from PAH and Healthy subjects. SAGE allows quantitative analysis of thousands transcripts, relying on the principle that a short oligonucleotide (tag) can uniquely identify mRNA transcripts. Tag frequency reflects transcript abundance. We enrolled patients naïve for a specific PAH therapy (4 IPAH non-responder, 3 IPAH responder, 6 HeritablePAH), and 8 healthy subjects. Comparative analysis revealed that significant differential expression was only restricted to a hundred of down- or up-regulated genes. Interestingly, these genes can be clustered into functional networks, sharing a number of crucial features in cellular homeostasis and signaling. SAGE can provide affordable analysis of genes amenable for molecular dissection of PAH using PBMCs as a sentinel, surrogate tissue. Altogether, these findings may disclose novel perspectives in the use of HDACi in PAH and potential biomarkers.
Resumo:
Articular cartilage lesions, with their inherent limited healing potential, are hard to treat and remain a challenging problem for orthopedic surgeons. Despite the development of several treatment strategies, the real potential of each procedure in terms of clinical benefit and effects on the joint degeneration processes is not clear. Aim of this PhD project was to evaluate the results, both in terms of clinical and imaging improvement, of new promising procedures developed to address the challenging cartilage pathology. Several studies have been followed in parallel and completed over the 3-year PhD, and are reported in detail in the following pages. In particular, the studies have been focused on the evaluation of the treatment indications of a scaffold based autologous chondrocyte implantation procedure, documenting its results for the classic indication of focal traumatic lesions, as well as its use for the treatment of more challenging patients, older, with degenerative lesions, or even as salvage procedure for more advanced stages of articular degeneration. The second field of study involved the analysis of the results obtained treating lesions of the articular surface with a new biomimetic osteochondral scaffold, which showed promise for the treatment of defects where the entire osteochondral unit is involved. Finally, a new minimally invasive procedure based on the use of growth factors derived from autologous platelets has been explored, showing results and underlining indicatios for the treatment of cartilage lesions and different stages of joint degeneration. These studies shed some light on the potential of the evaluated procedures, underlining good results as well as limits, they give some indications on the most appropriate candidates for their application, and document the current knowledge on cartilage treatment procedures suggesting the limitations that need to be addressed by future studies to improve the management of cartilage lesions.
Resumo:
Chondrocytes live isolated in the voluminous extracellular matrix of cartilage, which they secrete and is neither vascularized nor innervated. Nutrient and waste exchanges occur through diffusion leading to low oxygen tension around the cells. Consequently even normal cartilage under normal physiological conditions suffers from a poor reparative potential that predisposes to degenerative conditions, such as osteoarthritis of the joints, with significant clinical effects.rnOne of the key challenges in medicine is the structural and functional replacement of lost or damaged tissues. Current therapeutical approaches are to transplant cells, implant bioartificial tissues, and chemically induce regeneration at the site of the injury. None of them reproduces well the biological and biomechanical properties of hyaline cartilage.rnThis thesis investigates the re-differentiation of chondrocytes and the repair of cartilage mediated by signaling molecules, biomaterials, and factors provided in mixed cellular cultures (co-culture systems). As signaling molecules we have applied prostaglandin E2 (PGE2) and bone morphogenetic protein 1 (BMP-1) and we have transfected chondrocytes with BMP-1 expressing vectors. Our biomaterials have been hydrogels of type-I collagen and gelatin-based scaffolds designed to mimic the architecture and biochemistry of native cartilage and provide a suitable three-dimensional environment for the cells. We have brought chondrocytes to interact with osteosarcoma Cal 72 cells or with murine preosteoblastic KS483 cells, either in a cell-to-cell or in a paracrine manner.rnExogenous stimulation with PGE2 or BMP-1 did not improve the differentiation or the proliferation of human articular chondrocytes. BMP-1 induced chondrocytic de-differentiation in a dose-dependent manner. Prostaglandin stimulation from gelatin-based scaffolds (three-dimensional culture) showed a certain degree of chondrocyte re-differentiaton. Murine preosteoblastic KS483 cells had no beneficial effect on human articular chondrocytes jointly cultivated with them in hydrogels of type I collagen. Although the hydrogels provided the chondrocytes with a proper matrix in which the cells adopted their native morphology; additionally, the expression of chondrocytic proteoglycan increased in the co-cultures after two weeks. The co-culture of chondrocytes with osteoblast-like cells (in transwell systems) resulted in suppression of the regular de-differentiation program that passaged chondrocytes undergo when cultured in monolayers. Under these conditions, the extracellular matrix of the chondrocytes, rich in type-II collagen and aggrecan, was not transformed into the extracellular matrix characteristic of de-differentiated human articular chondrocytes, which is rich in type-I collagen and versican.rnThis thesis suggests novel strategies of tissue engineering for clinical attempts to improve cartilage repair. Since implants are prepared in vitro (ex-vivo) by expanding human articular chondrocytes (autologous or allogeneic), we conclude that it will be convenient to provide a proper three-dimensional support to the chondrocytes in culture, to supplement the culture medium with PGE2, and to stimulate chondrocytes with osteoblastic factors by cultivating them with osteoblasts.rn
Resumo:
The aim of this study is to investigate on some molecular mechanisms contributing to the pathogenesis of osteoarthritis (OA) and in particular to the senescence of articular chondrocytes. It is focused on understanding molecular events downstream GSK3β inactivation or dependent on the activity of IKKα, a kinase that does not belong to the phenotype of healthy articular chondrocytes. Moreover, the potential of some nutraceuticals on scavenging ROS thus reducing oxidative stress, DNA damage, and chondrocyte senescence has been evaluated in vitro. The in vitro LiCl-mediated GSK3β inactivation resulted in increased mitochondrial ROS production, that impacted on cellular proliferation, with S-phase transient arrest, increased SA-β gal and PAS staining, cell size and granularity. ROS are also responsible for the of increased expression of two major oxidative lesions, i.e. 1) double strand breaks, tagged by γH2AX, that associates with activation of GADD45β and p21, and 2) 8-oxo-dG adducts, that associate with increased IKKα and MMP-10 expression. The pattern observed in vitro was confirmed on cartilage from OA patients. IKKa dramatically affects the intensity of the DNA damage response induced by oxidative stress (H2O2 exposure) in chondrocytes, as evidenced by silencing strategies. At early time point an higher percentage of γH2AX positive cells and more foci in IKKa-KD cells are observed, but IKKa KD cells proved to almost completely recover after 24 hours respect to their controls. Telomere attrition is also reduced in IKKaKD. Finally MSH6 and MLH1 genes are up-regulated in IKKαKD cells but not in control cells. Hydroxytyrosol and Spermidine have a great ROS scavenging capacity in vitro. Both treatments revert the H2O2 dependent increase of cell death and γH2AX-foci formation and senescence, suggesting the ability of increasing cell homeostasis. These data indicate that nutraceuticals represent a great challenge in OA management, for both therapeutical and preventive purposes.