898 resultados para chelicerates, nervous system, development, axonal pathfinding, midline


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a steadily increasing pressure on cost-savings and productivity growth in sectors of order-picking such that the wish for rationalization by automation is rising. Special problems are faced trying to automatize handling operations of order-picking articles packed in bags. The mechanical properties of the objects and their hard-to-predict shape and position represent obstacles and are complicating handling operations. A systematic approach in system design is required. This article deals with the properties of such products under aspects of difficulties arising in automated handling and points out a useful system development methodology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Persons with Down syndrome (DS) uniquely have an increased frequency of leukemias but a decreased total frequency of solid tumors. The distribution and frequency of specific types of brain tumors have never been studied in DS. We evaluated the frequency of primary neural cell embryonal tumors and gliomas in a large international data set. The observed number of children with DS having a medulloblastoma, central nervous system primitive neuroectodermal tumor (CNS-PNET) or glial tumor was compared to the expected number. Data were collected from cancer registries or brain tumor registries in 13 countries of Europe, America, Asia and Oceania. The number of DS children with each category of tumor was treated as a Poisson variable with mean equal to 0.000884 times the total number of registrations in that category. Among 8,043 neural cell embryonal tumors (6,882 medulloblastomas and 1,161 CNS-PNETs), only one patient with medulloblastoma had DS, while 7.11 children in total and 6.08 with medulloblastoma were expected to have DS. (p 0.016 and 0.0066 respectively). Among 13,797 children with glioma, 10 had DS, whereas 12.2 were expected. Children with DS appear to be specifically protected against primary neural cell embryonal tumors of the CNS, whereas gliomas occur at the same frequency as in the general population. A similar protection against neuroblastoma, the principal extracranial neural cell embryonal tumor, has been observed in children with DS. Additional genetic material on the supernumerary chromosome 21 may protect against embryonal neural cell tumor development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract—Regeneration in the adult mammalian spinal cord is limited due to intrinsic properties of mature neurons and a hostile environment, mainly provided by central nervous system myelin and reactive astrocytes. Recent results indicate that propriospinal connections are a promising target for intervention to improve functional recovery. To study this functional regeneration in vitro we developed a model consisting of two organotypic spinal cord slices placed adjacently on multi-electrode arrays. The electrodes allow us to record the spontaneously occurring neuronal activity, which is often organized in network bursts. Within a few days in vitro (DIV), these bursts become synchronized between the two slices due to the formation of axonal connections. We cut them with a scalpel at different time points in vitro and record the neuronal activity 3 weeks later. The functional recovery ability was assessed by calculating the percentage of synchronized bursts between the two slices. We found that cultures lesioned at a young age (7–9 DIV) retained the high regeneration ability of embryonic tissue. However, cultures lesioned at older ages (>19 DIV) displayed a distinct reduction of synchronized activity. This reduction was not accompanied by an inability for axons to cross the lesion site. We show that functional regeneration in these old cultures can be improved by increasing the intracellular cAMP level with Rolipram or by placing a young slice next to an old one directly after the lesion. We conclude that co-cultures of two spinal cord slices are an appropriate model to study functional regeneration of intraspinal connections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trefoil factor 1 (TFF1) belongs to a family of secreted peptides with a characteristic tree-looped trefoil structure. TFFs are mainly expressed in the gastrointestinal tract where they play a critical role in the function of the mucosal barrier. TFF1 has been suggested as a neuropeptide, but not much is known about its expression and function in the central nervous system. We investigated the expression of TFF1 in the developing and adult rat midbrain. In the adult ventral mesencephalon, TFF1-immunoreactive (-ir) cells were predominantly found in the substantia nigra pars compacta (SNc), the ventral tegmental area (VTA) and in periaqueductal areas. While around 90% of the TFF1-ir cells in the SNc co-expressed tyrosine hydroxylase (TH), only a subpopulation of the TH-ir neurons expressed TFF1. Some TFF1-ir cells in the SNc co-expressed the calcium-binding proteins calbindin or calretinin and nearly all were NeuN-ir confirming a neuronal phenotype, which was supported by lack of co-localization with the astroglial marker glial fibrillary acidic protein (GFAP). Interestingly, at postnatal (P) day 7 and P14, a significantly higher proportion of TH-ir neurons in the SNc co-expressed TFF1 as compared to P21. In contrast, the proportion of TFF1-ir cells expressing TH remained unchanged during postnatal development. Furthermore, significantly more TH-ir neurons expressed TFF1 in the SNc, compared to the VTA at all four time-points investigated. Injection of the tracer fluorogold into the striatum of adult rats resulted in retrograde labeling of several TFF1 expressing cells in the SNc showing that a significant fraction of the TFF1-ir cells were projection neurons. This was also reflected by unilateral loss of TFF1-ir cells in SNc of 6-hydroxylase-lesioned hemiparkinsonian rats. In conclusion, we show for the first time that distinct subpopulations of midbrain dopaminergic neurons express TFF1, and that this expression pattern is altered in a rat model of Parkinson's disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The myelin-associated protein Nogo-A and its receptor Nogo-receptor 1 (NgR1) are known as potent growth inhibitors of the adult central nervous system (CNS). Nogo-A is mostly expressed on the surface of oligodendrocytes, but is also found in neurons of the adult and developing CNS. This observation suggests that Nogo-A serves additional functions in the brain. Hence, in the present study, we investigated the effects of antagonizing NgR1 on cultured organotypic and dissociated dopaminergic neurons. For that purpose ventral mesencephalic cultures from E14 rat embryos were grown in absence or presence of the NgR1 antagonist NEP1-40 for 1 week. Treatment with NEP1-40 significantly increased cell densities of tyrosine hydroxylase-immunoreactive neurons. Moreover, organotypic ventral mesencephalic cultures displayed a significantly bigger volume after NEP1-40 treatment. Morphological analysis of tyrosine hydroxylase-positive neurons disclosed longer neurites and higher numbers of primary neurites in dissociated cultures incubated with NEP1-40, whereas soma size was not changed. In conclusion, our findings demonstrate that interfering with Nogo-A signaling by antagonizing NgR1 modulates dopaminergic neuron properties during development. These observations highlight novel aspects of the role of Nogo-A in the CNS and might have an impact in the context of Parkinson's disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Treatment of central nervous system (CNS) diseases is limited by the blood-brain barrier (BBB), a selective vascular interface restricting passage of most molecules from blood into brain. Specific transport systems have evolved allowing circulating polar molecules to cross the BBB and gain access to the brain parenchyma. However, to date, few ligands exploiting such systems have proven clinically viable in the setting of CNS diseases. We reasoned that combinatorial phage-display screenings in vivo would yield peptides capable of crossing the BBB and allow for the development of ligand-directed targeting strategies of the brain. Here we show the identification of a peptide mediating systemic targeting to the normal brain and to an orthotopic human glioma model. We demonstrate that this peptide functionally mimics iron through an allosteric mechanism and that a non-canonical association of (i) transferrin, (ii) the iron-mimic ligand motif, and (iii) transferrin receptor mediates binding and transport of particles across the BBB. We also show that in orthotopic human glioma xenografts, a combination of transferrin receptor over-expression plus extended vascular permeability and ligand retention result in remarkable brain tumor targeting. Moreover, such tumor targeting attributes enables Herpes simplex virus thymidine kinase-mediated gene therapy of intracranial tumors for molecular genetic imaging and suicide gene delivery with ganciclovir. Finally, we expand our data by analyzing a large panel of primary CNS tumors through comprehensive tissue microarrays. Together, our approach and results provide a translational avenue for the detection and treatment of brain tumors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spinal cord injury (SCI) is a devastating condition that affects people in the prime of their lives. A myriad of vascular events occur after SCI, each of which contributes to the evolving pathology. The primary trauma causes mechanical damage to blood vessels, resulting in hemorrhage. The blood-spinal cord barrier (BSCB), a neurovascular unit that limits passage of most agents from systemic circulation to the central nervous system, breaks down, resulting in inflammation, scar formation, and other sequelae. Protracted BSCB disruption may exacerbate cellular injury and hinder neurobehavioral recovery in SCI. In these studies, angiopoietin-1 (Ang1), an agent known to reduce vascular permeability, was hypothesized to attenuate the severity of secondary injuries of SCI. Using longitudinal magnetic resonance imaging (MRI) studies (dynamic contrast-enhanced [DCE]-MRI for quantification of BSCB permeability, highresolution anatomical MRI for calculation of lesion size, and diffusion tensor imaging for assessment of axonal integrity), the acute, subacute, and chronic effects of Ang1 administration after SCI were evaluated. Neurobehavioral assessments were also performed. These non-invasive techniques have applicability to the monitoring of therapies in patients with SCI. In the acute phase of injury, Ang1 was found to reduce BSCB permeability and improve neuromotor recovery. Dynamic contrast-enhanced MRI revealed a persistent compromise of the BSCB up to two months post-injury. In the subacute phase of injury, Ang1’s effect on reducing BSCB permeability was maintained and it was found to transiently reduce axonal integrity. The SCI lesion burden was assessed with an objective method that compared favorably with segmentations from human raters. In the chronic phase of injury, Ang1 resulted in maintained reduction in BSCB permeability, a decrease in lesion size, and improved axonal integrity. Finally, longitudinal correlations among data from the MRI modalities and neurobehavioral assays were evaluated. Locomotor recovery was negatively correlated with lesion size in the Ang1 cohort and positively correlated with diffusion measures in the vehicle cohort. In summary, the results demonstrate a possible role for Ang1 in mitigating the secondary pathologies of SCI during the acute and chronic phases of injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cellular form of the prion protein (PrP(c)) is necessary for the development of prion diseases and is a highly conserved protein that may play a role in neuroprotection. PrP(c) is found in both blood and cerebrospinal fluid and is likely produced by both peripheral tissues and the central nervous system (CNS). Exchange of PrP(c) between the brain and peripheral tissues could have important pathophysiologic and therapeutic implications, but it is unknown whether PrP(c) can cross the blood-brain barrier (BBB). Here, we found that radioactively labeled PrP(c) crossed the BBB in both the brain-to-blood and blood-to-brain directions. PrP(c) was enzymatically stable in blood and in brain, was cleared by liver and kidney, and was sequestered by spleen and the cervical lymph nodes. Circulating PrP(c) entered all regions of the CNS, but uptake by the lumbar and cervical spinal cord, hypothalamus, thalamus, and striatum was particularly high. These results show that PrP(c) has bidirectional, saturable transport across the BBB and selectively targets some CNS regions. Such transport may play a role in PrP(c) function and prion replication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To examine the relationships between physical growth and medications prescribed for symptoms of attention-deficit hyperactivity disorder in children with HIV. METHODS: Analysis of data from children with perinatally acquired HIV (N = 2251; age 3-19 years), with and without prescriptions for stimulant and nonstimulant medications used to treat attention-deficit hyperactivity disorder, in a long-term observational study. Height and weight measurements were transformed to z scores and compared across medication groups. Changes in z scores during a 2-year interval were compared using multiple linear regression models adjusting for selected covariates. RESULTS: Participants with (n = 215) and without (n = 2036) prescriptions were shorter than expected based on US age and gender norms (p < .001). Children without prescriptions weighed less at baseline than children in the general population (p < .001) but gained height and weight at a faster rate (p < .001). Children prescribed stimulants were similar to population norms in baseline weight; their height and weight growth velocities were comparable with the general population and children without prescriptions (for weight, p = .511 and .100, respectively). Children prescribed nonstimulants had the lowest baseline height but were similar to population norms in baseline weight. Their height and weight growth velocities were comparable with the general population but significantly slower than children without prescriptions (p = .01 and .02, respectively). CONCLUSION: The use of stimulants to treat symptoms of attention-deficit hyperactivity disorder does not significantly exacerbate the potential for growth delay in children with HIV and may afford opportunities for interventions that promote physical growth. Prospective studies are needed to confirm these findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methylphenidate (MPD), commonly known as Ritalin, is the most frequently prescribed drug to treat children and adults with attention deficit hyperactivity disorder (ADHD). Adolescence is a period of development involving numerous neuroplasticities throughout the central nervous system (CNS). Exposure to a psychostimulant such as MPD during this crucial period of neurodevelopment may cause transient or permanent changes in the CNS. Genetic variability may also influence these differences. Thus, the objective of the present study was to determine whether acute and chronic administration of MPD (0.6, 2.5, or 10.0mg/kg, i.p.) elicit effects among adolescent WKY, SHR, and SD rats and to compare whether there were strain differences. An automated, computerized, open-field activity monitoring system was used to study the dose-response characteristics of acute and repeated MPD administration throughout the 11-day experimental protocol. Results showed that all three adolescent rat groups exhibited dose-response characteristics following acute and chronic MPD administration, as well as strain differences. These strain differences depended on the MPD dose and locomotor index. Chronic treatment of MPD in these animals did not elicit behavioral sensitization, a phenomenon described in adult rats that is characterized by the progressive augmentation of the locomotor response to repeated administration of the drug. These results suggest that the animal's age at time of drug treatment and strain/genetic variability play a crucial role in the acute and chronic effect of MPD and in the development of behavioral sensitization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Viral invasion of the central nervous system (CNS) and development of neurological symptoms is a characteristic of many retroviruses. The mechanism by which retrovirus infection causes neurological dysfunction has yet to be fully elucidated. Given the complexity of the retrovirus-mediated neuropathogenesis, studies using small animal models are extremely valuable. Our laboratory has used a mutant moloney murine leukemia retrovirus, ts1-mediated neurodegneration. We hypothesize that astrocytes play an important role in ts1-induced neurodegeneration since they are retroviral reservoirs and supporting cells for neurons. It has been shown that ts1 is able to infect astrocytes in vivo and in vitro. Astrocytes, the dominant cell population in the CNS, extend their end feet to endothelial cells and neuronal synapse to provide neuronal support. Signs of oxidative stress in the ts1-infected CNS have been well-documented from previous studies. After viral infection, retroviral DNA is generated from its RNA genome and integrated into the host genome. In this study, we identified the life cycle of ts1 in the infected astrocytes. During the infection, we observed reactive oxygen species (ROS) upregulations: one at low levels during the early infection phase and another at high levels during the late infection phase. Initially we hypothesized that p53 might play an important role in ts1-mediated astrocytic cell death. Subsequently, we found that p53 is unlikely to be involved in the ts1-mediated astrocytic cell death. Instead, p53 phosphorylation was increased by the early ROS upregulation via ATM, the protein encoded by the ataxia-telangiectasia (A-T) mutated gene. The early upregulation of p53 delayed viral gene expression by suppressing expression of the catalytic subunit of NADPH oxidase (NOX). We further demonstrated that the ROS upregulation induced by NOX activation plays an important role in establishing retroviral genome into the host. Inhibition of NOX decreased viral replication and delayed the onset of pathological symptoms in ts1-infected mice. These observations lead us to conclude that suppression of NOX not only prevents the establishment of the retrovirus but also decreases oxidative stress in the CNS. This study provides us with new perspectives on the retrovirus-host cell interaction and sheds light on retrovirus-induced neurodegeneration as a result of the astrocyte-neuron interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fundamental problem in developmental biology concerns the mechanisms involved in the establishment of the embryonic axis. We are studying Xenopus nuclear factor 7 (xnf7) which we believe to be involved in dorsal-ventral patterning in Xenopus laevis. Xnf7 is a maternal gene product that is retained in the cytoplasm during early embryogenesis until the mid-blastula transition (MBT) when it reenters the nuclei. It is a member of a novel zinc finger proteins, the B-box family, consisting mainly of transcription factors and protooncogenes.^ The xnf7 gene is reexpressed during embryogenesis at the gastrula-neurula stage of development, with its zygotic expression limited to the central nervous system (CNS). In this study we showed that there are two different cDNAs coding for xnf7, xnf7-O and xnf7-B. They differ by 39 amino acid changes scattered throughout the cDNA. The expression of both forms of xnf7 is limited primarily to the central nervous system (CNS) and dorsal axial structures during later stages of embryogenesis.^ In order to study the spatial and temporal regulation of the gene, we screened a Xenopus genomic library using part of xnf7 cDNA as a probe. A genomic clone corresponding to the xnf7-O type was isolated, its 5$\sp\prime$ putative regulatory region sequenced, and its transcriptional initiation site mapped. The putative promoter region contained binding sites for Sp1, E2F, USF, a Pu box and AP1. CAT/xnf7 fusion genes were constructed containing various 5$\sp\prime$ deleted regions of the xnf7 promoter linked to a CAT (Chloramphenicol Acetyl Transferase) reporter vector. These constructs were injected into Xenopus oocytes and embryos to study the regions of the xnf7 promoter responsible for basal, temporal and spatial regulation of the gene. The activity of the fusion genes was measured by the conversion of chloramphenicol to its acetylated forms, and the spatial distribution of the transcripts by whole mount in situ hybridization. We showed that the elements involved in basal regulation of xnf7 lie within 121 basepairs upstream of the transcriptional inititiation site. A DNase I footprint analysis performed using oocyte extract showed that a E2F and 2 Sp1 sites were protected. During development, the fusion genes were expressed following the MBT, in accordance with the timing of the endogenous xnf7 gene. Spatially, the expression of the fusion gene containing 421 basepairs of the promoter was localized to the dorsal region of the embryo in a pattern that was almost identical to that detected with the endogenous transcripts. Therefore, the elements involved in spatial and temporal regulation of the xnf7 gene during development were contained within 421 basepairs upstream of the transcriptional initiation site. Future work will further define the elements involved in the spatial and temporal regulation and the trans-factors that interact with them. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Von Hippel-Lindau (VHL) disease is an autosomal dominant disorder characterized by the development of retinal and central nervous system hemangioblastoma, renal cell carcinoma (RCC), pheochromocytoma and pancreatic islet cell tumors (PICT). The VHL gene maps to chromosome 3p25 and has been shown to be mutated in 57% of sporadic cases of RCC, implicating VHL in the genesis of RCC. We report a multigeneration VHL kindred in which four affected female siblings developed PICT at early ages. Analysis of the three coding exons of the VHL gene in this family revealed a single, missense mutation in codon 238. Inheritance of the 238 mutation has been reported to correlate with a 62% risk of pheochromocytoma development. In this kindred, all affected individuals carried the mutation as well as one additional sibling who showed no evidence of disease. Clinical screening of this individual indicated small ($<$1 cm) pancreatic and kidney tumors. Results suggest that inheritance of the codon 238 mutation does not correlate with early onset pheochromocytoma. Rather, the only individual in the pedigree with pheochromocytoma was the proband's mother who developed bilateral pheochromocytoma at the age of 62. Thus, the VHL codon 238 mutation may predispose to late onset pheochromocytoma in this family; however, it does not explain the preponderance of PICT in the third generation since this mutation has not been reported to increase the risk of developing pancreatic lesions. This suggests that inheritance of the codon 238 mutation and subsequent somatic inactivation of the wild type allele of the VHL gene may not be sufficient to explain the initiation and subsequent progression to malignancy in VHL-associated neoplasms. Since the two tumor types that most frequently progress to malignancy are RCC and PICT, we asked whether loss of heterozygosity (LOH) could be detected proximal to the VHL gene on chromosome 3 in distinct regions of 3p previously implicated by LOH and cytogenetic studies to contain tumor suppressor loci for RCC. LOH was performed on high molecular weight DNA isolated from peripheral blood and frozen tumor tissue of family members using microsatellite markers spanning 3p. Results indicated LOH for all informative 3p loci in tumor tissue from affected individuals with PICT. LOH was detected along the entire length of the chromosome arm and included the proximal region of 3p13-14.2 implicated in the hereditary form of renal cell carcinoma.^ If 3p LOH were a critical event in pancreatic islet cell tumorigenesis, then it should be expected that LOH in sporadic islet cell tumors would also be observed. We expanded LOH studies to include sporadic cases of PICT. Consistent LOH was observed on 3p with a highest frequency LOH in the region 3p21.2. This is the first evidence for an association between chromosome 3 loci and pancreatic islet cell tumorigenesis. (Abstract shortened by UMI.) ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Wilms' tumor 1 gene (WT1) encodes a zinc-finger transcription factor and is expressed in urogenital, hematopoietic and other tissues. It is expressed in a temporal and spatial manner in both embryonic and adult stages. To obtain a better understanding of the biological function of WT1, we studied two aspects of WT1 regulation: one is the identification of tissue-specific cis-regulatory elements that regulate its expression, the other is the downstream genes which are modulated by WT1.^ My studies indicate that in addition to the promoter, other regulatory elements are required for the tissue specific expression of this gene. A 259-bp hematopoietic specific enhancer in intron 3 of the WT1 gene increased the transcriptional activity of the WT1 promoter by 8- to 10-fold in K562 and HL60 cells. Sequence analysis revealed both GATA and c-Myb motifs in the enhancer fragment. Mutation of the GATA motif decreased the enhancer activity by 60% in K562 cells. Electrophoretic mobility shift assays showed that both GATA-1 and GATA-2 proteins in K562 nuclear extracts bind to this motif. Cotransfection of the enhancer containing reporter construct with a GATA-1 or GATA-2 expression vector showed that both GATA-1 and GATA-2 transactivated this enhancer, increasing the CAT reporter activity 10-15 fold and 5-fold respectively. Similar analysis of the c-Myb motif by cotransfection with the enhancer CAT reporter construct and a c-Myb expression vector showed that c-Myb transactivated the enhancer by 5-fold. A DNase I-hypersensitive site has been identified in the 258 bp enhancer region. These data suggest that GATA-1 and c-Myb are responsible for the activity of this enhancer in hematopoietic cells and may bind to the enhancer in vivo. In the process of searching for cis-regulatory elements in transgenic mice, we have identified a 1.0 kb fragment that is 50 kb downstream from the promoter and is required for the central nervous system expression of WT1.^ In the search for downstream target genes of WT1, we noted that the proto-oncogene N-myc is coexpressed with the tumor suppressor gene WT1 in the developing kidney and is overexpressed in many Wilms' tumors. Sequence analysis revealed eleven consensus WT1 binding sites located in the 1 kb mouse N-myc promoter. We further showed that the N-myc promoter was down-regulated by WT1 in transient transfection assays. Electrophoretic mobility shift assays showed that oligonucleotides containing the WT1 motifs could bind WT1 protein. Furthermore, a Denys-Drash syndrome mutant of WT1, R394W, that has a mutation in the DNA binding domain, failed to repress the N-myc promoter. This suggests that the repression of the N-myc promoter is mediated by DNA binding of WT1. This finding helps to elucidate the relationship of WT1 and N-myc in tumorigenesis and renal development. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

(gamma)-Aminobutyric acid (GABA), a neurotransmitter in the mammalian central nervous system, influences neuronal activity by interacting with at least two pharmacologically and functionally distinct receptors. GABA(,A) receptors are sensitive to blockade by bicuculline, are associated with benzodiazepine and barbiturate binding sites, and mediate chloride flux. The biochemical and pharmacolocal properties of GABA(,B) receptors, which are stereoselectively activated by (beta)-p-chlorophenyl GABA (baclofen), are less well understood. The aim of this study was to define these features of GABA(,B) receptors, with particular emphasis on their possible relationship to the adenylate cyclase system in brain.^ By themselves, GABA agonists have no effect on cAMP accumulation in rat brain slices. However, some GABA agonists markedly enhance the cAMP accumulation that results from exposure to norepinephrine, adenosine, VIP, and cholera toxin. Evidence that this response is mediated by the GABA(,B) system is provided by the finding that it is bicuculline-insensitive, and by the fact that only those agents that interact with GABA(,B) binding sites are active in this regard. GABA(,B) agonists are able to enhance neurotransmitter-stimulated cAMP accumulation in only certain brain regions, and the response is not influenced by phosphodiesterase inhibitors, although is totally dependent on the availability of extracellular calcium. Furthermore, data suggest that inhibition of phospholipase A(,2), a calcium-dependent enzyme, decreases the augmenting response to baclofen, although inhibitors of arachidonic acid metabolism are without effect. These findings indicate that either arachidonic acid or lysophospholipid, products of PLA(,2)-mediated degradation of phospholipids, mediates the augmentation. Moreover, phorbol esters, compounds which directly activate protein kinase C, were also found to enhance neurotransmitter-stimulated cAMP accumulation in rat brain slices. Since this enzyme is known to be stimulated by unsaturated fatty acids such as arachidonate, it is proposed that GABA(,B) agonists enhance cAMP accumulation by fostering the production of arachidonic acid which stimulates protein kinase C, leading to the phosphorylation of some component of the adenylate cyclase system. Thus, GABA, through an interaction with GABA(,B) receptors, modulates neurotransmitter receptor responsiveness in brain. The pharmocological manipulation of this response could lead to the development of therapeutic agents having a more subtle influence than current drugs on central nervous system function. ^