947 resultados para chaotic and hyperchaotic rossler systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bluetooth is a short-range radio technology operating in the unlicensed industrial-scientific-medical (ISM) band at 2.45 GHz. A scatternet is established by linking several piconets together in ad hoc fashion to yield a global wireless ad hoc network. This paper proposes a polling policy that aims to achieve increased system throughput and reduced packet delays while providing reasonably good fairness among all traffic flows in a Bluetooth Scatternet. Experimental results from our proposed algorithm show performance improvements over a well known existing algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates in-line spring-mass systems (An), fixed at one end and free at the other, with n-degrees of freedom (d.f.). The objective is to find feasible in-line systems (B(n)) that are isospectral to a given system. The spring-mass systems, A(n) and B(n), are represented by Jacobi matrices. An error function is developed with the help of the Jacobi matrices A(n) and B(n). The problem of finding the isospectral systems is posed as an optimization problem with the aim of minimizing the error function. The approach for creating isospectral systems uses the fact that the trace of two isospectral Jacobi matrices A(n) and B(n) should be identical. A modification is made to the diagonal elements of the given Jacobi matrix (A(n)), to create the isospectral systems. The optimization problem is solved using the firefly algorithm augmented by a local search procedure. Numerical results are obtained and resulting isospectral systems are shown for 4 d.f. and 10 d.f. systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a spin model, namely, the Kitaev model augmented by a loop term and perturbed by an Ising Hamiltonian, and show that it exhibits both confinement-deconfinement transitions from spin liquid to antiferromagnetic/spin-chain/ferromagnetic phases and topological quantum phase transitions between gapped and gapless spin-liquid phases. We develop a fermionic resonating-valence-bonds (RVB) mean-field theory to chart out the phase diagram of the model and estimate the stability of its spin-liquid phases, which might be relevant for attempts to realize the model in optical lattices and other spin systems. We present an analytical mean-field theory to study the confinement-deconfinement transition for large coefficient of the loop term and show that this transition is first order within such mean-field analysis in this limit. We also conjecture that in some other regimes, the confinement-deconfinement transitions in the model, predicted to be first order within the mean-field theory, may become second order via a defect condensation mechanism. Finally, we present a general classification of the perturbations to the Kitaev model on the basis of their effect on it's spin correlation functions and derive a necessary and sufficient condition, within the regime of validity of perturbation theory, for the spin correlators to exhibit a long-ranged power-law behavior in the presence of such perturbations. Our results reproduce those of Tikhonov et al. [Phys. Rev. Lett. 106, 067203 (2011)] as a special case.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An analytical analysis of ferroresonance with possible cases of its occurrence in series-and shunt-compensated systems is presented. A term `percentage unstable zoneÿ is defined to compare the jump severity of different nonlinearities. A direct analytical method has been shown to yield complete information. An attempt has been made to find all four critical points: jump-from and jump-to points of ferroresonance jump phenomena. The systems considered for analysis are typical 500 kV transmission systems of various lengths.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a method for minimizing the sum of the square of voltage deviations by a least-square minimization technique, and thus improving the voltage profile in a given system by adjusting control variables, such as tap position of transformers, reactive power injection of VAR sources and generator excitations. The control variables and dependent variables are related by a matrix J whose elements are computed as the sensitivity matrix. Linear programming is used to calculate voltage increments that minimize transmission losses. The active and reactive power optimization sub-problems are solved separately taking advantage of the loose coupling between the two problems. The proposed algorithm is applied to IEEE 14-and 30-bus systems and numerical results are presented. The method is computationally fast and promises to be suitable for implementation in real-time dispatch centres.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A comparative study of spherical and rod-like nanocrystalline GdO:Eu (GdEuO) red phosphors prepared by solution combustion and hydrothermal methods have been reported. Powder X-ray diffraction (PXRD) results confirm the as-formed product in combustion method showing mixed phase of monoclinic and cubic of GdO:Eu. Upon calcinations at 800C for 3 h, dominant cubic phase was achieved. The as-formed precursor hydrothermal product shows hexagonal Gd(OH):Eu phase and it converts to pure cubic phase of GdO:Eu on calcination at 600C for 3 h. TEM micrographs of hydrothermally prepared cubic GdO:Eu phase shows nanorods with a diameter of 15 nm and length varying from 50 to 150 nm, whereas combustion product shows the particles to be of irregular shape, with different sizes in the range 50-250 nm. Dominant red emission (612 nm) was observed in cubic GdO:Eu which has been assigned to transition. However, in hexagonal Gd(OH):Eu, emission peaks at 614 and 621 nm were observed. The strong red emission of cubic GdO:Eu nanophosphors by hydrothermal method are promising for high performance display materials. The variation in optical energy bandgap () was noticed in as-formed and heat treated systems in both the techniques. This is due to more ordered structure in heat treated samples and reduction in structural defects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a comprehensive numerical study of spiral-and scroll-wave dynamics in a state-of-the-art mathematical model for human ventricular tissue with fiber rotation, transmural heterogeneity, myocytes, and fibroblasts. Our mathematical model introduces fibroblasts randomly, to mimic diffuse fibrosis, in the ten Tusscher-Noble-Noble-Panfilov (TNNP) model for human ventricular tissue; the passive fibroblasts in our model do not exhibit an action potential in the absence of coupling with myocytes; and we allow for a coupling between nearby myocytes and fibroblasts. Our study of a single myocyte-fibroblast (MF) composite, with a single myocyte coupled to N-f fibroblasts via a gap-junctional conductance G(gap), reveals five qualitatively different responses for this composite. Our investigations of two-dimensional domains with a random distribution of fibroblasts in a myocyte background reveal that, as the percentage P-f of fibroblasts increases, the conduction velocity of a plane wave decreases until there is conduction failure. If we consider spiral-wave dynamics in such a medium we find, in two dimensions, a variety of nonequilibrium states, temporally periodic, quasiperiodic, chaotic, and quiescent, and an intricate sequence of transitions between them; we also study the analogous sequence of transitions for three-dimensional scroll waves in a three-dimensional version of our mathematical model that includes both fiber rotation and transmural heterogeneity. We thus elucidate random-fibrosis-induced nonequilibrium transitions, which lead to conduction block for spiral waves in two dimensions and scroll waves in three dimensions. We explore possible experimental implications of our mathematical and numerical studies for plane-, spiral-, and scroll-wave dynamics in cardiac tissue with fibrosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The breakdown of the Stokes-Einstein (SE) relation between diffusivity and viscosity at low temperatures is considered to be one of the hallmarks of glassy dynamics in liquids. Theoretical analyses relate this breakdown with the presence of heterogeneous dynamics, and by extension, with the fragility of glass formers. We perform an investigation of the breakdown of the SE relation in 2, 3, and 4 dimensions in order to understand these interrelations. Results from simulations of model glass formers show that the degree of the breakdown of the SE relation decreases with increasing spatial dimensionality. The breakdown itself can be rationalized via the difference between the activation free energies for diffusivity and viscosity (or relaxation times) in the Adam-Gibbs relation in three and four dimensions. The behavior in two dimensions also can be understood in terms of a generalized Adam-Gibbs relation that is observed in previous work. We calculate various measures of heterogeneity of dynamics and find that the degree of the SE breakdown and measures of heterogeneity of dynamics are generally well correlated but with some exceptions. The two-dimensional systems we study show deviations from the pattern of behavior of the three-and four-dimensional systems both at high and low temperatures. The fragility of the studied liquids is found to increase with spatial dimensionality, contrary to the expectation based on the association of fragility with heterogeneous dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of updating the reliability of instrumented structures based on measured response under random dynamic loading is considered. A solution strategy within the framework of Monte Carlo simulation based dynamic state estimation method and Girsanov's transformation for variance reduction is developed. For linear Gaussian state space models, the solution is developed based on continuous version of the Kalman filter, while, for non-linear and (or) non-Gaussian state space models, bootstrap particle filters are adopted. The controls to implement the Girsanov transformation are developed by solving a constrained non-linear optimization problem. Numerical illustrations include studies on a multi degree of freedom linear system and non-linear systems with geometric and (or) hereditary non-linearities and non-stationary random excitations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fast and efficient channel estimation is key to achieving high data rate performance in mobile and vehicular communication systems, where the channel is fast time-varying. To this end, this work proposes and optimizes channel-dependent training schemes for reciprocal Multiple-Input Multiple-Output (MIMO) channels with beamforming (BF) at the transmitter and receiver. First, assuming that Channel State Information (CSI) is available at the receiver, a channel-dependent Reverse Channel Training (RCT) signal is proposed that enables efficient estimation of the BF vector at the transmitter with a minimum training duration of only one symbol. In contrast, conventional orthogonal training requires a minimum training duration equal to the number of receive antennas. A tight approximation to the capacity lower bound on the system is derived, which is used as a performance metric to optimize the parameters of the RCT. Next, assuming that CSI is available at the transmitter, a channel-dependent forward-link training signal is proposed and its power and duration are optimized with respect to an approximate capacity lower bound. Monte Carlo simulations illustrate the significant performance improvement offered by the proposed channel-dependent training schemes over the existing channel-agnostic orthogonal training schemes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given the significant gains that relay-based cooperation promises, the practical problems of acquisition of channel state information (CSI) and the characterization and optimization of performance with imperfect CSI are receiving increasing attention. We develop novel and accurate expressions for the symbol error probability (SEP) for fixed-gain amplify-and-forward relaying when the destination acquires CSI using the time-efficient cascaded channel estimation (CCE) protocol. The CCE protocol saves time by making the destination directly estimate the product of the source-relay and relay-destination channel gains. For a single relay system, we first develop a novel SEP expression and a tight SEP upper bound. We then similarly analyze an opportunistic multi-relay system, in which both selection and coherent demodulation use imperfect estimates. A distinctive aspect of our approach is the use of as few simplifying approximations as possible, which results in new results that are accurate at signal-to-noise-ratios as low as 1 dB for single and multi-relay systems. Using insights gleaned from an asymptotic analysis, we also present a simple, closed-form, nearly-optimal solution for allocation of energy between pilot and data symbols at the source and relay(s).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A dynamical instability is observed in experimental studies on micro-channels of rectangular cross-section with smallest dimension 100 and 160 mu m in which one of the walls is made of soft gel. There is a spontaneous transition from an ordered, laminar flow to a chaotic and highly mixed flow state when the Reynolds number increases beyond a critical value. The critical Reynolds number, which decreases as the elasticity modulus of the soft wall is reduced, is as low as 200 for the softest wall used here (in contrast to 1200 for a rigid-walled channel) The instability onset is observed by the breakup of a dye-stream introduced in the centre of the micro-channel, as well as the onset of wall oscillations due to laser scattering from fluorescent beads embedded in the wall of the channel. The mixing time across a channel of width 1.5 mm, measured by dye-stream and outlet conductance experiments, is smaller by a factor of 10(5) than that for a laminar flow. The increased mixing rate comes at very little cost, because the pressure drop (energy requirement to drive the flow) increases continuously and modestly at transition. The deformed shape is reconstructed numerically, and computational fluid dynamics (CFD) simulations are carried out to obtain the pressure gradient and the velocity fields for different flow rates. The pressure difference across the channel predicted by simulations is in agreement with the experiments (within experimental errors) for flow rates where the dye stream is laminar, but the experimental pressure difference is higher than the simulation prediction after dye-stream breakup. A linear stability analysis is carried out using the parallel-flow approximation, in which the wall is modelled as a neo-Hookean elastic solid, and the simulation results for the mean velocity and pressure gradient from the CFD simulations are used as inputs. The stability analysis accurately predicts the Reynolds number (based on flow rate) at which an instability is observed in the dye stream, and it also predicts that the instability first takes place at the downstream converging section of the channel, and not at the upstream diverging section. The stability analysis also indicates that the destabilization is due to the modification of the flow and the local pressure gradient due to the wall deformation; if we assume a parabolic velocity profile with the pressure gradient given by the plane Poiseuille law, the flow is always found to be stable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of updating the reliability of instrumented structures based on measured response under random dynamic loading is considered. A solution strategy within the framework of Monte Carlo simulation based dynamic state estimation method and Girsanov’s transformation for variance reduction is developed. For linear Gaussian state space models, the solution is developed based on continuous version of the Kalman filter, while, for non-linear and (or) non-Gaussian state space models, bootstrap particle filters are adopted. The controls to implement the Girsanov transformation are developed by solving a constrained non-linear optimization problem. Numerical illustrations include studies on a multi degree of freedom linear system and non-linear systems with geometric and (or) hereditary non-linearities and non-stationary random excitations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diffusion controlled growth of the phases in Hf-Si and Zr-Si systems are studied by bulk diffusion couple technique. Only two phases grow in the interdiffusion zone, although several phases are present in both the systems. The location of the Kirkendall marker plane, detected based on the grain morphology, indicates that disilicides grow by the diffusion of Si. Diffusion of the metal species in these phases is negligible. This indicates that vacancies are present mainly on the Si sublattice. The activation energies for integrated diffusion coefficients in the HfSi2 and ZrSi2 are estimated as 394 +/- 37 and 346 +/- 34 kJ mol(-1), respectively. The same is calculated for the HfSi phase as 485 +/- 42 kJ mol(-1). The activation energies for Si tracer diffusion in the HfSi2 and ZrSi2 phases are estimated as 430 +/- 36 and 348 +/- 34 kJ mol(-1), respectively. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diffusion controlled growth of the phases in Hf-Si and Zr-Si systems are studied by bulk diffusion couple technique. Only two phases grow in the interdiffusion zone, although several phases are present in both the systems. The location of the Kirkendall marker plane, detected based on the grain morphology, indicates that disilicides grow by the diffusion of Si. Diffusion of the metal species in these phases is negligible. This indicates that vacancies are present mainly on the Si sublattice. The activation energies for integrated diffusion coefficients in the HfSi2 and ZrSi2 are estimated as 394 +/- 37 and 346 +/- 34 kJ mol(-1), respectively. The same is calculated for the HfSi phase as 485 +/- 42 kJ mol(-1). The activation energies for Si tracer diffusion in the HfSi2 and ZrSi2 phases are estimated as 430 +/- 36 and 348 +/- 34 kJ mol(-1), respectively. (C) 2013 Elsevier B.V. All rights reserved.