960 resultados para catalytic partial oxidation of methane
Resumo:
Soy isoflavones are thought to have a cardioprotective effect that is partly mediated by an inhibitory influence on the oxidation of low density lipoprotein (LDL). However, the aglycone forms investigated in many previous studies do not circulate in appreciable quantities because they are metabolised in the gut and liver. We investigated effects of various isoflavone metabolites, including for the first time the sulphated conjugates formed in the liver and the mucosa of the small intestine, on copper-induced LDL oxidation. The parent aglycones inhibited oxidation, although only 5% as well as quercetin. Metabolism increased or decreased their effectiveness. Equol inhibited 2.65-fold better than its parent compound daidzein and 8-hydroxydaidzein, not previously assessed, was 12.5-fold better than daidzein. However, monosulphated conjugates of genistein, daidzein and equol were much less effective and disulphates completely ineffective. Since almost all isoflavones circulate as conjugates, these data suggest that despite the increased potency produced by some metabolic changes, isoflavones may not be effective antioxidants in vivo unless they are deconjugated again.
Resumo:
Oxidised low density lipoprotein (LDL) may play a role in atherogenesis. We have investigated some of the mechanisms by which the thiol cysteine and the disulphide cystine can influence the oxidation of LDL by copper ions. Cysteine or cystine (100 PM) inhibited the oxidation of native LDL by copper in a simple phosphate buffer. One of the mechanisms by which cysteine (or more likely its oxidation products in the presence of copper) and cystine inhibited LDL oxidation was by decreasing the binding of copper to LDL (97% inhibition). Cysteine, but not cystine, rapidly reduced Cu2+ to Cu+. This may help to explain the antioxidant effect of cysteine as it may limit the amount of Cu2+ that is available to convert alpha-tocopherol in LDL into the prooxidant alpha-tocopherol radical. Cysteine (but not cystine) had a prooxidant effect, however, toward partially oxidised LDL in the presence of a low copper concentration, which may have been due to the rapid breakdown of lipid hydroperoxides in partially oxidised LDL by Cu+ generated by cysteine. To prove that cysteine can cause the rapid breakdown of lipid hydroperoxides in LDL, we enriched LDL with lipid hydroperoxides using an azo initiator in the absence of copper. Cysteine, but not cystine, increased the rate of lipid hydroperoxide decomposition to thiobarbituric acid-reactive substances (TBARS) in the presence of copper. (C) 2003 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The kinetics of the reactions of 1-and 2-butoxy radicals have been studied using a slow-flow photochemical reactor with GC-FID detection of reactants and products. Branching ratios between decomposition, CH3CH(O-.)CH2CH3 CH3CHO + C2H5, reaction (7), and reaction with oxygen, CH3CH(O-.)CH2CH3 + O-2 -> CH3C(O)C2H5 + HO2, reaction (6), for the 2-butoxy radical and between isomerization, CH3CH2CH2CH2O. -> CH2CH2CH2CH2OH, reaction (9), and reaction with oxygen, CH3CH2CH2CH2O. + O-2 -> C3H7CHO + HO2, reaction (8), for the 1-butoxy radical were measured as a function of oxygen concentration at atmospheric pressure over the temperature range 250-318 K. Evidence for the formation of a small fraction of chemically activated alkoxy radicals generated from the photolysis of alkyl nitrite precursors and from the exothermic reaction of 2-butyl peroxy radicals with NO was observed. The temperature dependence of the rate constant ratios for a thermalized system is given by k(7)/k(6) = 5.4 x 1026 exp[(-47.4 +/- 2.8 kJ mol(-1))/RT] molecule cm(-3) and k(9)/k(8) = 1.98 x 10(23) exp[(-22.6 +/- 3.9 kJ mol(-1))/RT] molecule cm(-3). The results agree well with the available experimental literature data at ambient temperature but the temperature dependence of the rate constant ratios is weaker than in current recommendations.
Resumo:
The first 3-D open-framework TiGaPO complex, constructed from (TiO6)-O-III, (TiO6)-O-IV, GaO4, and PO4 polyhedra, contains pyridinium cations in a 1-D pore network and can be oxidized in air at 543 K with retention of the original framework structure.
Resumo:
Novel non-toxic poly(ethylene glycol)-supported 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) moieties are demonstrated to give an excellent interfacial catalysis for the selective oxidation of alcohols to the corresponding carbonyl species in biphasic media and investigation for the recovery of these new macromolecular catalysts via precipitation with diethyl ether after catalysis has also been briefly studied.
Resumo:
[MoO(O-2)(2)(PyCOXH)(H2O)] and PMePh3[MoO(O-2)(2)(PyCO)] (PyCOXH = Pyridine-2-carboxaldoxime and PyCOH = Pyridine-2-carboxylic acid) have been synthesized. Both complexes have been characterized by physico-chemical and spectroscopic methods; in addition, the carboxylate complex has been structurally characterized by X-ray crystallography. The carboxylate complex is a more efficient catalyst than the oxime complex for epoxidation of olefins and shows excellent catalytic activity for the substrates: cyclooctene, cinnamyl alcohol, allyl alcohol and 1-hexene.
Resumo:
Free radicals from one-electron oxidation of the antimalarial drug pyronaridine have been studied by pulse radiolysis. The results show that pyronaridine is readily oxidised to an intermediate semi-iminoquine radical by inorganic and organic free radicals, including those derived from tryptophan and acetaminophen. The pyronaridine radical is rapidly reduced by both ascorbate and caffeic acid. The results indicate that the one-electron reduction potential of the pyronaridine radical at neutral pH lies between those of acetaminophen (707 mV) and caffeic acid (534 mV). The pyronaridine radical decays to produce the iminoquinone, detected by electrospray mass spectrometry, in a second-order process that density functional theory (DFT) calculations (UB3LYP/6-31+G*) suggest is a disproportionation reaction. Important calculated dimensions of pyronaridine, its phenoxyl and aminyl radical, as well as the iminoquinone, are presented.
Resumo:
The oxidation of organic films on cloud condensation nuclei has the potential to affect climate and precipitation events. In this work we present a study of the oxidation of a monolayer of deuterated oleic acid (cis-9-octadecenoic acid) at the air-water interface by ozone to determine if oxidation removes the organic film or replaces it with a product film. A range of different aqueous sub-phases were studied. The surface excess of deuterated material was followed by neutron reflection whilst the surface pressure was followed using a Wilhelmy plate. The neutron reflection data reveal that approximately half the organic material remains at the air-water interface following the oxidation of oleic acid by ozone, thus cleavage of the double bond by ozone creates one surface active species and one species that partitions to the bulk (or gas) phase. The most probable products, produced with a yield of similar to(87 +/- 14)%, are nonanoic acid, which remains at the interface, and azelaic acid (nonanedioic acid), which dissolves into the bulk solution. We also report a surface bimolecular rate constant for the reaction between ozone and oleic acid of (7.3 +/- 0.9) x 10(-11) cm(2) molecule s(-1). The rate constant and product yield are not affected by the solution sub-phase. An uptake coefficient of ozone on the oleic acid monolayer of similar to 4 x 10(-6) is estimated from our results. A simple Kohler analysis demonstrates that the oxidation of oleic acid by ozone on an atmospheric aerosol will lower the critical supersaturation needed for cloud droplet formation. We calculate an atmospheric chemical lifetime of oleic acid of 1.3 hours, significantly longer than laboratory studies on pure oleic acid particles suggest, but more consistent with field studies reporting oleic acid present in aged atmospheric aerosol.
Resumo:
The results of an experimental study into the oxidative degradation of proxies for atmospheric aerosol are presented. We demonstrate that the laser Raman tweezers method can be used successfully to obtain uptake coeffcients for gaseous oxidants on individual aqueous and organic droplets, whilst the size and composition of the droplets is simultaneously followed. A laser tweezers system was used to trap individual droplets containing an unsaturated organic compound in either an aqueous or organic ( alkane) solvent. The droplet was exposed to gas- phase ozone and the reaction kinetics and products followed using Raman spectroscopy. The reactions of three different organic compounds with ozone were studied: fumarate anions, benzoate anions and alpha pinene. The fumarate and benzoate anions in aqueous solution were used to represent components of humic- like substances, HULIS; a alpha- pinene in an alkane solvent was studied as a proxy for biogenic aerosol. The kinetic analysis shows that for these systems the diffusive transport and mass accommodation of ozone is relatively fast, and that liquid- phase di. ffusion and reaction are the rate determining steps. Uptake coe. ffcients, g, were found to be ( 1.1 +/- 0.7) x 10(-5), ( 1.5 +/- 0.7) x 10 (-5) and ( 3.0 - 7.5) x 10 (-3) for the reactions of ozone with the fumarate, benzoate and a- pinene containing droplets, respectively. Liquid- phase bimolecular rate coe. cients for reactions of dissolved ozone molecules with fumarate, benzoate and a- pinene were also obtained: k(fumarate) = ( 2.7 +/- 2) x 10 (5), k(benzoate) = ( 3.5 +/- 3) x 10 (5) and k(alpha-pinene) = ( 1-3) x 10(7) dm(3) mol (-1) s (- 1). The droplet size was found to remain stable over the course of the oxidation process for the HULIS- proxies and for the oxidation of a- pinene in pentadecane. The study of the alpha- pinene/ ozone system is the first using organic seed particles to show that the hygroscopicity of the particle does not increase dramatically over the course of the oxidation. No products were detected by Raman spectroscopy for the reaction of benzoate ions with ozone. One product peak, consistent with aqueous carbonate anions, was observed when following the oxidation of fumarate ions by ozone. Product peaks observed in the reaction of ozone with alpha- pinene suggest the formation of new species containing carbonyl groups.
Resumo:
Two vanadium(V) complexes, [VO(L-1)]acac)] (1) and [VO(L-2)(acac)] (2), where H2L1 = N,N-bis(2-hydroxy-3-5-di-tert-butyl-benzyl)propylamine and H2L2 = 2,2'-selenobis(4,6-di-tert-butylphenol), have been synthesized and characterized by elemental analyses, IR, V-51 NMR, both in the solid and in solution, and cyclic voltammetric studies. Single crystal X-ray studies reveal that in complex 1 the vanadium atom is octahedrally coordinated with an O5N donor environment, where the oxygen atom of the V-V=O moiety and the N atom of the ONO ligand occupy the axial sites while two oxygen atoms (O1 and O2) from the bisphenolate ligand and two oxygen atoms (O3 and O4) from the acac ligand occupy the equatorial plane. A similar bonding pattern has also been encountered for 2 with the exception that a Se atom instead of N is involved in weak bonding to the metal center. Both complexes showed reversible cyclic voltammeric responses and E-1/2 appears at -0.18 and 0.10 V versus NHE for complexes 1 and 2, respectively. The kinetics of oxidation of ascorbic acid by complex 1 were carried out in 50% MeCN-50% HO (v/v) at 25 degrees C. The high formation constant value, Q = 63 +/- 7 M-1, reveals that the reaction proceeds through the rapid formation of a H-bonded intermediate. The low k(2)Q(2)/k(1)Q(1) ratio (13.4) for 1 points out that there is extensive H-bonding between the oxygen atom of the V-V=O group and the OH group of ascorbic acid. (c) 2007 Published by Elsevier Ltd.
Resumo:
Soy isoflavones are thought to have a cardioprotective effect that is partly mediated by an inhibitory influence on the oxidation of low density lipoprotein (LDL). However, the aglycone forms investigated in many previous studies do not circulate in appreciable quantities because they are metabolised in the gut and liver. We investigated effects of various isoflavone metabolites, including for the first time the sulphated conjugates formed in the liver and the mucosa of the small intestine, on copper-induced LDL oxidation. The parent aglycones inhibited oxidation, although only 5% as well as quercetin. Metabolism increased or decreased their effectiveness. Equol inhibited 2.65-fold better than its parent compound daidzein and 8-hydroxydaidzein, not previously assessed, was 12.5-fold better than daidzein. However, monosulphated conjugates of genistein, daidzein and equol were much less effective and disulphates completely ineffective. Since almost all isoflavones circulate as conjugates, these data suggest that despite the increased potency produced by some metabolic changes, isoflavones may not be effective antioxidants in vivo unless they are deconjugated again.
Resumo:
Oxidized low-density lipoprotein (oxLDL) exhibits many atherogenic effects, including the promotion of monocyte recruitment to the arterial endothelium and the induction of scavenger receptor expression. However, while atherosclerosis involves chronic inflammation within the arterial intima, it is unclear whether oxLDL alone provides a direct inflammatory stimulus for monocyte-macrophages. Furthermore, oxLDL is not a single, well-defined entity, but has structural and physical properties which vary according to the degree of oxidation. We tested the hypothesis that the biological effects of oxLDL will vary according to its degree of oxidation and that some species of oxLDL will have atherogenic properties, while other species may be responsible for its inflammatory activity. The atherogenic and inflammatory properties of LDL oxidized to predetermined degrees (mild, moderate and extensive oxidation) were investigated in a single system using human monocyte-derived macrophages. Expression of CD36 mRNA was up-regulated by mildly- and moderately-oxLDL, but not highly-oxLDL. The expression of the transcription factor, proliferator-activated receptor-gamma (PPARgamma), which has been proposed to positively regulate the expression of CD36, was increased to the greatest degree by highly-oxLDL. However, the DNA binding activity of PPARgamma was increased only by mildly- and moderately-oxLDL. None of the oxLDL species appeared to be pro-inflammatory towards monocytes, either directly or indirectly through mediators derived from lymphocytes, regardless of the degree of oxidation. (C) 2003 Published by Elsevier Science Ireland Ltd.
Resumo:
Low-energy and photoemission electron microscopy enables the determination of facet planes of polycrystalline surfaces and the study of their chemical composition at the sub-m scale. Using these techniques the early oxidation stages of nickel were studied. After exposing the surface to 20 L of oxygen at 373 K a uniform layer of chemisorbed oxygen was found on all facets. After oxygen exposure at 473–673 K, small NiO crystallites are formed on all facets but not in the vicinity of all grain boundaries. The crystallites are separated by areas of bare Ni without significant oxygen coverage.