959 resultados para cascade of pi-circuits


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The generation of rhythmic electrical activity is a prominent feature of spinal cord circuits that is used for locomotion and also for circuit refinement during development. The mechanisms involved in rhythm generation in spinal cord networks are not fully understood. It is for example not known whether spinal cord rhythms are driven by pacemaker neurons and if yes, which neurons are involved in this function. We studied the mechanisms involved in rhythm generation in slice cultures from fetal rats that were grown on multielectrode arrays (MEAs). We combined multisite extracellular recordings from the MEA electrodes with intracellular patch clamp recordings from single neurons. We found that spatially restricted oscillations of activity appeared in most of the cultures spontaneously. Such activity was based on intrinsic activity in a percentage of the neurons that could activate the spinal networks through recurrent excitation. The local oscillator networks critically involved NMDA, AMPA and GABA / glycine receptors at subsequent phases of the oscillation cycle. Intrinsic spiking in individual neurons (in the absence of functional synaptic coupling) was based on persistent sodium currents. Intrinsic firing as well as persistent sodium currents were increased by 5-HT through 5-HT2 receptors. Comparing neuronal activity to muscle activity in co-cultures of spinal cord slices with muscle fibers we found that a percentage of the intrinsically spiking neurons were motoneurons. These motoneurons were electrically coupled among each other and they could drive the spinal networks through cholinergic recurrent excitation. These findings open the possibility that during development rhythmic activity in motoneurons is not only involved in circuit refinement downstream at the neuromuscular endplates but also upstream at the level of spinal cord circuits.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sodium hydride-mediated cascade reaction towards the synthesis of 1,5-disubstituted uracil from cyanamides derived from the Baylis-Hillman ad-ducts

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

For many years a combined analysis of pionic hydrogen and deuterium atoms has been known as a good tool to extract information on the isovector and especially on the isoscalar s-wave pN scattering length. However, given the smallness of the isoscalar scattering length, the analysis becomes useful only if the pion–deuteron scattering length is controlled theoretically to a high accuracy comparable to the experimental precision. To achieve the required few-percent accuracy one needs theoretical control over all isospin-conserving three-body pNN !pNN operators up to one order before the contribution of the dominant unknown (N†N)2pp contact term. This term appears at next-to-next-to-leading order in Weinberg counting. In addition, one needs to include isospin-violating effects in both two-body (pN) and three-body (pNN) operators. In this talk we discuss the results of the recent analysis where these isospin-conserving and -violating effects have been carefully taken into account. Based on this analysis, we present the up-to-date values of the s-wave pN scattering lengths.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The behavior of sample components whose pI values are outside the pH gradient established by 101 hypothetical biprotic carrier ampholytes covering a pH 6-8 range was investigated by computer simulation under constant current conditions with concomitant constant electroosmosis toward the cathode. Data obtained with the sample being applied between zones of carrier ampholytes and on the anodic side of the carrier ampholytes were studied and found to evolve into zone structures comprising three regions between anolyte and catholyte. The focusing region with the pH gradient is bracketed by two isotachopheretic zone structures comprising selected sample and carrier components as isotachophoretic zones. The isotachophoretic structures electrophoretically migrate in opposite direction and their lengths increase with time due to the gradual isotachophoretic decay at the pH gradient edges. Due to electroosmosis, however, the overall pattern is being transported toward the cathode. Sample components whose pI values are outside the established pH gradient are demonstrated to form isotachophoretic zones behind the leading cation of the catholyte (components with pI values larger than 8) and the leading anion of the anolyte (components with pI values smaller than 6). Amphoteric compounds with appropriate pI values or nonamphoteric components can act as isotachophoretic spacer compounds between sample compounds or between the leader and the sample with the highest mobility. The simulation data obtained provide for the first time insight into the dynamics of amphoteric sample components that do not focus within the established pH gradient.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dealing with one's emotions is a core skill in everyday life. Effective cognitive control strategies have been shown to be neurobiologically represented in prefrontal structures regulating limbic regions. In addition to cognitive strategies, mindfulness-associated methods are increasingly applied in psychotherapy. We compared the neurobiological mechanisms of these two strategies, i.e. cognitive reappraisal and mindfulness, during both the cued expectation and perception of negative and potentially negative emotional pictures. Fifty-three healthy participants were examined with functional magnetic resonance imaging (47 participants included in analysis). Twenty-four subjects applied mindfulness, 23 used cognitive reappraisal. On the neurofunctional level, both strategies were associated with comparable activity of the medial prefrontal cortex and the amygdala. When expecting negative versus neutral stimuli, the mindfulness group showed stronger activations in ventro- and dorsolateral prefrontal cortex, supramarginal gyrus as well as in the left insula. During the perception of negative versus neutral stimuli, the two groups only differed in an increased activity in the caudate in the cognitive group. Altogether, both strategies recruited overlapping brain regions known to be involved in emotion regulation. This result suggests that common neural circuits are involved in the emotion regulation by mindfulness-based and cognitive reappraisal strategies. Identifying differential activations being associated with the two strategies in this study might be one step towards a better understanding of differential mechanisms of change underlying frequently used psychotherapeutic interventions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ischemia/reperfusion injury (IRI) may occur from ischemia due to thrombotic occlusion, trauma or surgical interventions, including transplantation, with subsequent reestablishment of circulation. Time-dependent molecular and structural changes result from the deprivation of blood and oxygen in the affected tissue during ischemia. Upon restoration of blood flow a multifaceted network of plasma cascades is activated, including the complement-, coagulation-, kinin-, and fibrinolytic system, which plays a major role in the reperfusion-triggered inflammatory process. The plasma cascade systems are therefore promising therapeutic targets for attenuation of IRI. Earlier studies showed beneficial effects through inhibition of the complement system using specific complement inhibitors. However, pivotal roles in IRI are also attributed to other cascades. This raises the question, whether drugs, such as C1 esterase inhibitor, which regulate more than one cascade at a time, have a higher therapeutic potential. The present review discusses different therapeutic approaches ranging from specific complement inhibition to simultaneous inhibition of plasma cascade systems for reduction of IRI, gives an overview of the plasma cascade systems in IRI as well as highlights recent findings in this field.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

High-energy e(-) and pi(-) were measured by the multichannel plate (MCP) detector at the PiM1 beam line of the High Intensity Proton Accelerator Facilities located at the Paul Scherrer Institute, Villigen, Switzerland. The measurements provide the absolute detection efficiencies for these particles: 5.8% +/- 0.5% for electrons in the beam momenta range 17.5-300 MeV/c and 6.0% +/- 1.3% for pions in the beam momenta range 172-345 MeV/c. The pulse height distribution determined from the measurements is close to an exponential function with negative exponent, indicating that the particles penetrated the MCP material before producing the signal somewhere inside the channel. Low charge extraction and nominal gains of the MCP detector observed in this study are consistent with the proposed mechanism of the signal formation by penetrating radiation. A very similar MCP ion detector will be used in the Neutral Ion Mass (NIM) spectrometer designed for the JUICE mission of European Space Agency (ESA) to the Jupiter system, to perform measurements of the chemical composition of the Galilean moon exospheres. The detection efficiency for penetrating radiation determined in the present studies is important for the optimisation of the radiation shielding of the NIM detector against the high-rate and high-energy electrons trapped in Jupiter's magnetic field. Furthermore, the current studies indicate that MCP detectors can be useful to measure high-energy particle beams at high temporal resolution. (C) 2015 AIP Publishing LLC.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The pi and pi-star orbitals of the hydrogen molecular cation are obtained using Maple in the same manner as the sigma and sigma-star orbitals were obtained in paper-36.