981 resultados para carbon stable isotopes
Resumo:
The Eastern Mediterranean Transient (EMT) occurred in the Aegean Sea from 1988 to 1995 and is the most significant intermediate-to-deep Mediterranean overturning perturbation reported by instrumental records. The EMT was likely caused by accumulation of high salinity waters in the Levantine and enhanced heat loss in the Aegean Sea, coupled with surface water freshening in the Sicily Channel. It is still unknown whether similar transients occurred in the past and, if so, what their forcing processes were. In this study, sediments from the Sicily Channel document surface water freshening (SCFR) at 1910±12, 1812±18, 1725±25 and 1580±30 CE. A regional ocean hindcast links SCFR to enhanced deep-water production and in turn to strengthened Mediterranean thermohaline circulation. Independent evidence collected in the Aegean Sea supports this reconstruction, showing that enhanced bottom water ventilation in the Eastern Mediterranean was associated with each SCFR event. Comparison between the records and multi-decadal atmospheric circulation patterns and climatic external forcings indicates that Mediterranean circulation destabilisation occurs during positive North Atlantic Oscillation (NAO) and negative Atlantic Multidecadal Oscillation (AMO) phases, reduced solar activity and strong tropical volcanic eruptions. They may have recurrently produced favourable deep-water formation conditions, both increasing salinity and reducing temperature on multi-decadal time scales.
Resumo:
We generated a high resolution (~8 ky) benthic record from a West Pacific marginal basin to investigate the detailed structure and spectral characteristics of deep water isotope fluctuations during the middle Miocene. The benthic record from ODP Site 1146 allows unprecedented resolution of the structure of the middle Miocene delta13C excursion, as well as tighter control on the chronology of climatic events. Spectral analysis of the variance in the delta18O and delta13C records from ODP Site 1146 reveals spectral power concentrated in the eccentricity band (400-, ~100-ky) over the time interval between 13 and 17 Ma. The amplitude evolution in the 400-ky band is strikingly similar to that of the long eccentricity in Laskar's solution. There is an abrupt switch to the obliquity band in the delta18O record at -14.9 Ma, suggesting a shift in the ocean/climate response to orbital forcing (from low latitude eccentricity to high latitude obliquity forcing). The obliquity signal is pervasive in the delta18O record until -13.9 Ma, when a sharp increase in delta18O values indicates a major climatic transition. Comparison of delta18O and delta13C profiles from DSDP Site 588 (SW Pacific Ocean), ODP Site 761 (E Indian Ocean) and ODP Site 1146 (South China Sea) reveals significantly cooler deep water in the NE Indian Ocean throughout the middle Miocene and a restricted deep water exchange between the Pacific Ocean and Indian Ocean.
Resumo:
Mangroves play an important role in carbon sequestration, but soil organic carbon (SOC) stocks differ between marine and estuarine mangroves, suggesting differing processes and drivers of SOC accumulation. Here, we compared undegraded and degraded marine and estuarine mangroves in a regional approach across the Indonesian archipelago for their SOC stocks and evaluated possible drivers imposed by nutrient limitations along the land-to-sea gradients. SOC stocks in natural marine mangroves (271–572 Mg ha-1 m-1 were much higher than under estuarine mangroves (100–315 Mg ha-1 m-1 with a further decrease caused by degradation to 80–132 Mg ha-1 m-1. Soils differed in C/N ratio (marine: 29–64; estuarine: 9–28), δ15N (marine: 0.6 to 0.7‰; estuarine: 2.5 to 7.2‰), and plant-available P (marine: 2.3–6.3 mg kg-1; estuarine: 0.16–1.8 mg kg-1). We found N and P supply of sea-oriented mangroves primarily met by dominating symbiotic N2 fixation from air and P import from sea, while mangroves on the landward gradient increasingly covered their demand in N and P from allochthonous sources and SOM recycling. Pioneer plants favored by degradation further increased nutrient recycling from soil resulting in smaller SOC stocks in the topsoil. These processes explained the differences in SOC stocks along the land-to-sea gradient in each mangrove type as well as the SOC stock differences observed between estuarine and marine mangrove ecosystems. This first large-scale evaluation of drivers of SOC stocks under mangroves thus suggests a continuum in mangrove functioning across scales and ecotypes and additionally provides viable proxies for carbon stock estimations in PES or REDD schemes.
Resumo:
Heavily contaminated sediments are a serious concern for ecosystem quality, especially in coastal areas, where vulnerability is high due to intense anthropogenic pressure. Surface sediments (54 stations), 50 cm interface cores (five specific stations), river particles, coal and bulk Pb plate from past French Navy activities, seawater and mussels were collected in Toulon Bay (NW Mediterranean Sea). Lead content and Pb stable isotope composition have evidenced the direct impact of sediment pollution stock on both the water column quality and the living organisms, through the specific Pb isotopic signature in these considered compartments. The history of pollution events including past and present contaminant dispersion in Toulon Bay were also demonstrated by historical records of Pb content and Pb isotope ratios in sediment profiles. The sediment resuspension events, as simulated by batch experiments, could be a major factor contributing to the high Pb mobility in the considered ecosystem. A survey of Pb concentrations in surface seawater at 40 stations has revealed poor seawater quality, affecting both the dissolved fraction and suspended particles and points to marina/harbors as additional diffuse sources of dissolved Pb.