863 resultados para camera motion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

En este proyecto, se presenta un informe técnico sobre la cámara Leap Motion y el Software Development Kit correspondiente, el cual es un dispositivo con una cámara de profundidad orientada a interfaces hombre-máquina. Esto es realizado con el propósito de desarrollar una interfaz hombre-máquina basada en un sistema de reconocimiento de gestos de manos. Después de un exhaustivo estudio de la cámara Leap Motion, se han realizado diversos programas de ejemplo con la intención de verificar las capacidades descritas en el informe técnico, poniendo a prueba la Application Programming Interface y evaluando la precisión de las diferentes medidas obtenidas sobre los datos de la cámara. Finalmente, se desarrolla un prototipo de un sistema de reconocimiento de gestos. Los datos sobre la posición y orientación de la punta de los dedos obtenidos de la Leap Motion son usados para describir un gesto mediante un vector descriptor, el cual es enviado a una Máquina Vectores Soporte, utilizada como clasificador multi-clase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Validating modern oceanographic theories using models produced through stereo computer vision principles has recently emerged. Space-time (4-D) models of the ocean surface may be generated by stacking a series of 3-D reconstructions independently generated for each time instant or, in a more robust manner, by simultaneously processing several snapshots coherently in a true ?4-D reconstruction.? However, the accuracy of these computer-vision-generated models is subject to the estimations of camera parameters, which may be corrupted under the influence of natural factors such as wind and vibrations. Therefore, removing the unpredictable errors of the camera parameters is necessary for an accurate reconstruction. In this paper, we propose a novel algorithm that can jointly perform a 4-D reconstruction as well as correct the camera parameter errors introduced by external factors. The technique is founded upon variational optimization methods to benefit from their numerous advantages: continuity of the estimated surface in space and time, robustness, and accuracy. The performance of the proposed algorithm is tested using synthetic data produced through computer graphics techniques, based on which the errors of the camera parameters arising from natural factors can be simulated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel and high-quality system for moving object detection in sequences recorded with moving cameras is proposed. This system is based on the collaboration between an automatic homography estimation module for image alignment, and a robust moving object detection using an efficient spatiotemporal nonparametric background modeling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Technological progress in the area of informatics and human interface platforms create a window of opportunities for the neurorehablitation of patients with motor impairments. The CogWatch project (www.cogwatch.eu) aims to create an intelligent assistance system to improve motor planning and execution in patients with apraxia during their daily activities. Due to the brain damage caused by cardiovascular incident these patients suffer from impairments in the ability to use tools, and to sequence actions during daily tasks (such as making breakfast). Based on the common coding theory (Hommel et al., 2001) and mirror neuron primate research (Rizzolatti et al., 2001) we aim to explore use of cues, which incorporate aspects of biological motion from healthy adults performing everyday tasks requiring tool use and ecological sounds linked to the action goal. We hypothesize that patients with apraxia will benefit from supplementary sensory information relevant to the task, which will reinforce the selection of the appropriate motor plan. Findings from this study determine the type of sensory guidance in the CogWatch interface. Rationale for the experimental design is presented and the relevant literature is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este Trabajo de Fin de Grado (TFG) tiene el objetivo incorporar el dispositivo Leap Motion [1] en un juego educativo para niños con necesidades educativas especiales para permitirles aprender de una forma divertida mientras disfrutan con los mini juegos que ofrece nuestra aplicación. Está destinado al apoyo del sistema educativo para los niños con necesidades educativas especiales. Debido al público que tenemos como objetivo debemos de tener en cuenta que hay distintos tipos de usuarios según el tipo de discapacidad que tienen. Entre ellas tenemos discapacidad visual, auditiva, cognitiva y motriz. Tenemos distintos mini juegos para facilitar el aprendizaje de las letras y nuevas palabras, los nombres de colores y diferenciarlos y la asociación de conceptos mediante ejemplos sencillos como son ropa, juguetes y comida. Para hacer que la interacción sea más divertida tenemos distintos tipos de dispositivos de interacción: unos comunes como son el teclado y la pantalla táctil y otros más novedosos como son Kinect [2] y Leap Motion que es el que se introducirá en el desarrollo de este Trabajo de Fin de Grado. El otro objetivo de este proyecto es el estudio de los distintos dispositivos de interacción. Se quiere descubrir qué tipo de sistemas de interacción son más sencillos de aprender, cuáles son más intuitivos para los niños, los que les resultan más interesantes permitiendo captar mejor su atención y sus opuestos, es decir, los que son más difíciles de entender, los más monótonos y los más aburridos para ellos.---ABSTRACT---This Final Degree Project (TFG) aims to incorporate the Leap Motion device [1] in an educational game for children with special educational needs to enable them to learn in a funny way while enjoying the mini games that our application offered. It is intended to support the education system for children with special educational needs. Because the public that we have as objective we must take into account that there are different types of users depending on the type of disability they have. Among them we have visual, auditory, cognitive and motor disabilities. We have different mini games to make easier learning of letters and new words, names and distinguish colors and the association of concepts through simple examples such as clothing, toys and food. To make the interaction more fun we have different interaction devices: common such as the keyboard and the touch screen and other more innovative such as Kinect [2] and Leap Motion which is to be introduced in the development of this Final Degree Work. The other objective of this project is to study the various interaction devices. You want to find out what type of interaction systems are easier to learn, which are more intuitive for children, who are more interesting allowing better capture their attention and their opposites, that is, those that are more difficult to understand, the most monotonous and most boring for them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El uso de técnicas para la monitorización del movimiento humano generalmente permite a los investigadores analizar la cinemática y especialmente las capacidades motoras en aquellas actividades de la vida cotidiana que persiguen un objetivo concreto como pueden ser la preparación de bebidas y comida, e incluso en tareas de aseo. Adicionalmente, la evaluación del movimiento y el comportamiento humanos en el campo de la rehabilitación cognitiva es esencial para profundizar en las dificultades que algunas personas encuentran en la ejecución de actividades diarias después de accidentes cerebro-vasculares. Estas dificultades están principalmente asociadas a la realización de pasos secuenciales y al reconocimiento del uso de herramientas y objetos. La interpretación de los datos sobre la actitud de este tipo de pacientes para reconocer y determinar el nivel de éxito en la ejecución de las acciones, y para ampliar el conocimiento en las enfermedades cerebrales, sus consecuencias y severidad, depende totalmente de los dispositivos usados para la captura de esos datos y de la calidad de los mismos. Más aún, existe una necesidad real de mejorar las técnicas actuales de rehabilitación cognitiva contribuyendo al diseño de sistemas automáticos para crear una especie de terapeuta virtual que asegure una vida más independiente de estos pacientes y reduzca la carga de trabajo de los terapeutas. Con este objetivo, el uso de sensores y dispositivos para obtener datos en tiempo real de la ejecución y estado de la tarea de rehabilitación es esencial para también contribuir al diseño y entrenamiento de futuros algoritmos que pudieran reconocer errores automáticamente para informar al paciente acerca de ellos mediante distintos tipos de pistas como pueden ser imágenes, mensajes auditivos o incluso videos. La tecnología y soluciones existentes en este campo no ofrecen una manera totalmente robusta y efectiva para obtener datos en tiempo real, por un lado, porque pueden influir en el movimiento del propio paciente en caso de las plataformas basadas en el uso de marcadores que necesitan sensores pegados en la piel; y por otro lado, debido a la complejidad o alto coste de implantación lo que hace difícil pensar en la idea de instalar un sistema en el hospital o incluso en la casa del paciente. Esta tesis presenta la investigación realizada en el campo de la monitorización del movimiento de pacientes para proporcionar un paso adelante en términos de detección, seguimiento y reconocimiento del comportamiento de manos, gestos y cara mediante una manera no invasiva la cual puede mejorar la técnicas actuales de rehabilitación cognitiva para la adquisición en tiempo real de datos sobre el comportamiento del paciente y la ejecución de la tarea. Para entender la importancia del marco de esta tesis, inicialmente se presenta un resumen de las principales enfermedades cognitivas y se introducen las consecuencias que tienen en la ejecución de tareas de la vida diaria. Más aún, se investiga sobre las metodologías actuales de rehabilitación cognitiva. Teniendo en cuenta que las manos son la principal parte del cuerpo para la ejecución de tareas manuales de la vida cotidiana, también se resumen las tecnologías existentes para la captura de movimiento de manos. Una de las principales contribuciones de esta tesis está relacionada con el diseño y evaluación de una solución no invasiva para detectar y seguir las manos durante la ejecución de tareas manuales de la vida cotidiana que a su vez involucran la manipulación de objetos. Esta solución la cual no necesita marcadores adicionales y está basada en una cámara de profundidad de bajo coste, es robusta, precisa y fácil de instalar. Otra contribución presentada se centra en el reconocimiento de gestos para detectar el agarre de objetos basado en un sensor infrarrojo de última generación, y también complementado con una cámara de profundidad. Esta nueva técnica, y también no invasiva, sincroniza ambos sensores para seguir objetos específicos además de reconocer eventos concretos relacionados con tareas de aseo. Más aún, se realiza una evaluación preliminar del reconocimiento de expresiones faciales para analizar si es adecuado para el reconocimiento del estado de ánimo durante la tarea. Por su parte, todos los componentes y algoritmos desarrollados son integrados en un prototipo simple para ser usado como plataforma de monitorización. Se realiza una evaluación técnica del funcionamiento de cada dispositivo para analizar si es adecuada para adquirir datos en tiempo real durante la ejecución de tareas cotidianas reales. Finalmente, se estudia la interacción con pacientes reales para obtener información del nivel de usabilidad del prototipo. Dicha información es esencial y útil para considerar una rehabilitación cognitiva basada en la idea de instalación del sistema en la propia casa del paciente al igual que en el hospital correspondiente. ABSTRACT The use of human motion monitoring techniques usually let researchers to analyse kinematics, especially in motor strategies for goal-oriented activities of daily living, such as the preparation of drinks and food, and even grooming tasks. Additionally, the evaluation of human movements and behaviour in the field of cognitive rehabilitation is essential to deep into the difficulties some people find in common activities after stroke. This difficulties are mainly associated with sequence actions and the recognition of tools usage. The interpretation of attitude data of this kind of patients in order to recognize and determine the level of success of the execution of actions, and to broaden the knowledge in brain diseases, consequences and severity, depends totally on the devices used for the capture of that data and the quality of it. Moreover, there is a real need of improving the current cognitive rehabilitation techniques by contributing to the design of automatic systems to create a kind of virtual therapist for the improvement of the independent life of these stroke patients and to reduce the workload of the occupational therapists currently in charge of them. For this purpose, the use of sensors and devices to obtain real time data of the execution and state of the rehabilitation task is essential to also contribute to the design and training of future smart algorithms which may recognise errors to automatically provide multimodal feedback through different types of cues such as still images, auditory messages or even videos. The technology and solutions currently adopted in the field don't offer a totally robust and effective way for obtaining real time data, on the one hand, because they may influence the patient's movement in case of marker-based platforms which need sensors attached to the skin; and on the other hand, because of the complexity or high cost of implementation, which make difficult the idea of installing a system at the hospital or even patient's home. This thesis presents the research done in the field of user monitoring to provide a step forward in terms of detection, tracking and recognition of hand movements, gestures and face via a non-invasive way which could improve current techniques for cognitive rehabilitation for real time data acquisition of patient's behaviour and execution of the task. In order to understand the importance of the scope of the thesis, initially, a summary of the main cognitive diseases that require for rehabilitation and an introduction of the consequences on the execution of daily tasks are presented. Moreover, research is done about the actual methodology to provide cognitive rehabilitation. Considering that the main body members involved in the completion of a handmade daily task are the hands, the current technologies for human hands movements capture are also highlighted. One of the main contributions of this thesis is related to the design and evaluation of a non-invasive approach to detect and track user's hands during the execution of handmade activities of daily living which involve the manipulation of objects. This approach does not need the inclusion of any additional markers. In addition, it is only based on a low-cost depth camera, it is robust, accurate and easy to install. Another contribution presented is focused on the hand gesture recognition for detecting object grasping based on a brand new infrared sensor, and also complemented with a depth camera. This new, and also non-invasive, solution which synchronizes both sensors to track specific tools as well as recognize specific events related to grooming is evaluated. Moreover, a preliminary assessment of the recognition of facial expressions is carried out to analyse if it is adequate for recognizing mood during the execution of task. Meanwhile, all the corresponding hardware and software developed are integrated in a simple prototype with the purpose of being used as a platform for monitoring the execution of the rehabilitation task. Technical evaluation of the performance of each device is carried out in order to analyze its suitability to acquire real time data during the execution of real daily tasks. Finally, a kind of healthcare evaluation is also presented to obtain feedback about the usability of the system proposed paying special attention to the interaction with real users and stroke patients. This feedback is quite useful to consider the idea of a home-based cognitive rehabilitation as well as a possible hospital installation of the prototype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With a thin coating of low-work-function material, thermionic emission in the cathodic segment of bare tethers might be much greater than orbital-motion-limited (OML) ion collection current. The space charge of the emitted electrons decreases the electric field that accelerates them outwards, and could even reverse it for high enough emission, producing a potential hollow. In this work, at the conditions of high bias and relatively low emission that make the potential monotonic, an asymptotic analysis is carried out, extending the OML ion-collection analysis to investigate the probe response due to electrons emitted by the negatively biased cylindrical probe. At given emission, the space charge effect from emitted electrons increases with decreasing magnitude of negative probe bias. Although emitted electrons present negligible space charge far away from the probe, their effect cannot be neglected in the global analysis for the sheath structure and two thin layers in between sheath and the quasineutral region. The space-charge-limited condition is located. It is found that thermionic emission increases the range of probe radius for OML validity and is greatly more effective than ion collection for cathodic contact of tethers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Optical, Spectroscopic, and Infrared Remote Imaging System OSIRIS is the scientific camera system onboard the Rosetta spacecraft (Figure 1). The advanced high performance imaging system will be pivotal for the success of the Rosetta mission. OSIRIS will detect 67P/Churyumov-Gerasimenko from a distance of more than 106 km, characterise the comet shape and volume, its rotational state and find a suitable landing spot for Philae, the Rosetta lander. OSIRIS will observe the nucleus, its activity and surroundings down to a scale of ~2 cm px−1. The observations will begin well before the onset of cometary activity and will extend over months until the comet reaches perihelion. During the rendezvous episode of the Rosetta mission, OSIRIS will provide key information about the nature of cometary nuclei and reveal the physics of cometary activity that leads to the gas and dust coma. OSIRIS comprises a high resolution Narrow Angle Camera (NAC) unit and a Wide Angle Camera (WAC) unit accompanied by three electronics boxes. The NAC is designed to obtain high resolution images of the surface of comet 7P/Churyumov-Gerasimenko through 12 discrete filters over the wavelength range 250–1000 nm at an angular resolution of 18.6 μrad px−1. The WAC is optimised to provide images of the near-nucleus environment in 14 discrete filters at an angular resolution of 101 μrad px−1. The two units use identical shutter, filter wheel, front door, and detector systems. They are operated by a common Data Processing Unit. The OSIRIS instrument has a total mass of 35 kg and is provided by institutes from six European countries