956 resultados para calibrated fMRI
Resumo:
Motor imagery, passive movement, and movement observation have been suggested to activate the sensorimotor system without overt movement. The present study investigated these three covert movement modes together with overt movement in a within-subject design to allow for a fine-grained comparison of their abilities in activating the sensorimotor system, i.e. premotor, primary motor, and somatosensory cortices. For this, 21 healthy volunteers underwent functional magnetic resonance imaging (fMRI). In addition we explored the abilities of the different covert movement modes in activating the sensorimotor system in a pilot study of 5 stroke patients suffering from chronic severe hemiparesis. Results demonstrated that while all covert movement modes activated sensorimotor areas, there were profound differences between modes and between healthy volunteers and patients. In healthy volunteers, the pattern of neural activation in overt execution was best resembled by passive movement, followed by motor imagery, and lastly by movement observation. In patients, attempted overt execution was best resembled by motor imagery, followed by passive movement, and lastly by movement observation. Our results indicate that for severely hemiparetic stroke patients motor imagery may be the preferred way to activate the sensorimotor system without overt behavior. In addition, the clear differences between the covert movement modes point to the need for within-subject comparisons.
Resumo:
The type and thickness of insulation on the topside horizontal of cold pitched roofs has a significant role in controlling air movement, energy conservation and moisture transfer reduction through the ceiling to the loft (roof void) space. To investigate its importance, a numerical model using a HAM software package on a Matlab platform with a Simulink simulation tool has been developed using insitu measurements of airflows from the dwelling space through the ceiling to the loft of three houses of different configurations and loft space. Considering typical UK roof underlay (i.e. bituminous felt and a vapour permeable underlay), insitu measurements of the 3 houses were tested using a calibrated passive sampling technique. Using the measured airflows, the effect of air movement on three types of roof insulation (i.e. fibreglass, cellulose and foam) was modelled to investigate associated energy losses and moisture transport. The thickness of the insulation materials were varied but the ceiling airtightness and eaves gap size were kept constant. These instances were considered in order to visualize the effects of the changing parameters. In addition, two different roof underlays of varying resistances were considered and compared to access the influence of the underlay, if any, on energy conservation. The comparison of these insulation materials in relation to the other parameters showed that the type of insulation material and thickness, contributes significantly to energy conservation and moisture transfer reduction through the roof and hence of the building as a whole.
Resumo:
Using a model calibrated to Khao Yai National Park in Thailand, this paper highlights the importance of generating explicitly spatial and temporal data for developing management plans for tropical protected forests. Spatial and temporal cost-benefit analysis should account for the interactions between different land uses – such as the benefits of contiguous areas of preserved land and edge effects – and the realities of villagers living near forests who rely on extracted resources. By taking a temporal perspective, this paper provides a rare empirical assessment of the importance of quasi-option values when determining optimal management plans.
Resumo:
There is large uncertainty about the magnitude of warming and how rainfall patterns will change in response to any given scenario of future changes in atmospheric composition and land use. The models used for future climate projections were developed and calibrated using climate observations from the past 40 years. The geologic record of environmental responses to climate changes provides a unique opportunity to test model performance outside this limited climate range. Evaluation of model simulations against palaeodata shows that models reproduce the direction and large-scale patterns of past changes in climate, but tend to underestimate the magnitude of regional changes. As part of the effort to reduce model-related uncertainty and produce more reliable estimates of twenty-first century climate, the Palaeoclimate Modelling Intercomparison Project is systematically applying palaeoevaluation techniques to simulations of the past run with the models used to make future projections. This evaluation will provide assessments of model performance, including whether a model is sufficiently sensitive to changes in atmospheric composition, as well as providing estimates of the strength of biosphere and other feedbacks that could amplify the model response to these changes and modify the characteristics of climate variability.
Resumo:
A detailed spectrally-resolved extraterrestrial solar spectrum (ESS) is important for line-by-line radiative transfer modeling in the near-infrared (near-IR). Very few observationally-based high-resolution ESS are available in this spectral region. Consequently the theoretically-calculated ESS by Kurucz has been widely adopted. We present the CAVIAR (Continuum Absorption at Visible and Infrared Wavelengths and its Atmospheric Relevance) ESS which is derived using the Langley technique applied to calibrated observations using a ground-based high-resolution Fourier transform spectrometer (FTS) in atmospheric windows from 2000–10000 cm-1 (1–5 μm). There is good agreement between the strengths and positions of solar lines between the CAVIAR and the satellite-based ACE-FTS (Atmospheric Chemistry Experiment-FTS) ESS, in the spectral region where they overlap, and good agreement with other ground-based FTS measurements in two near-IR windows. However there are significant differences in the structure between the CAVIAR ESS and spectra from semi-empirical models. In addition, we found a difference of up to 8 % in the absolute (and hence the wavelength-integrated) irradiance between the CAVIAR ESS and that of Thuillier et al., which was based on measurements from the Atmospheric Laboratory for Applications and Science satellite and other sources. In many spectral regions, this difference is significant, as the coverage factor k = 2 (or 95 % confidence limit) uncertainties in the two sets of observations do not overlap. Since the total solar irradiance is relatively well constrained, if the CAVIAR ESS is correct, then this would indicate an integrated “loss” of solar irradiance of about 30 W m-2 in the near-IR that would have to be compensated by an increase at other wavelengths.
Resumo:
What are the precise brain regions supporting the short-term retention of verbal information? A previous functional magnetic resonance imaging (fMRI) study suggested that they may be topographically variable across individuals, occurring, in most, in regions posterior to prefrontal cortex (PFC), and that detection of these regions may be best suited to a single-subject (SS) approach to fMRI analysis (Feredoes and Postle, 2007). In contrast, other studies using spatially normalized group-averaged (SNGA) analyses have localized storage-related activity to PFC. To evaluate the necessity of the regions identified by these two methods, we applied repetitive transcranial magnetic stimulation (rTMS) to SS- and SNGA-identified regions throughout the retention period of a delayed letter-recognition task. Results indicated that rTMS targeting SS analysis-identified regions of left perisylvian and sensorimotor cortex impaired performance, whereas rTMS targeting the SNGA-identified region of left caudal PFC had no effect on performance. Our results support the view that the short-term retention of verbal information can be supported by regions associated with acoustic, lexical, phonological, and speech-based representation of information. They also suggest that the brain bases of some cognitive functions may be better detected by SS than by SNGA approaches to fMRI data analysis.
Resumo:
Brain activity can be measured with several non-invasive neuroimaging modalities, but each modality has inherent limitations with respect to resolution, contrast and interpretability. It is hoped that multimodal integration will address these limitations by using the complementary features of already available data. However, purely statistical integration can prove problematic owing to the disparate signal sources. As an alternative, we propose here an advanced neural population model implemented on an anatomically sound cortical mesh with freely adjustable connectivity, which features proper signal expression through a realistic head model for the electroencephalogram (EEG), as well as a haemodynamic model for functional magnetic resonance imaging based on blood oxygen level dependent contrast (fMRI BOLD). It hence allows simultaneous and realistic predictions of EEG and fMRI BOLD from the same underlying model of neural activity. As proof of principle, we investigate here the influence on simulated brain activity of strengthening visual connectivity. In the future we plan to fit multimodal data with this neural population model. This promises novel, model-based insights into the brain's activity in sleep, rest and task conditions.
Resumo:
The degree to which palaeoclimatic changes in the Southern Hemisphere co-varied with events in the high latitude Northern Hemisphere during the Last Termination is a contentious issue, with conflicting evidence for the degree of ‘teleconnection’ between different regions of the Southern Hemisphere. The available hypotheses are difficult to test robustly, however, because there are few detailed palaeoclimatic records in the Southern Hemisphere. Here we present climatic reconstructions from the southwestern Pacific, a key region in the Southern Hemisphere because of the potentially important role it plays in global climate change. The reconstructions for the period 20–10 kyr BP were obtained from five sites along a transect from southern New Zealand, through Australia to Indonesia, supported by 125 calibrated 14C ages. Two periods of significant climatic change can be identified across the region at around 17 and 14.2 cal kyr BP, most probably associated with the onset of warming in the West Pacific Warm Pool and the collapse of Antarctic ice during Meltwater Pulse-1A, respectively. The severe geochronological constraints that inherently afflict age models based on radiocarbon dating and the lack of quantified climatic parameters make more detailed interpretations problematic, however. There is an urgent need to address the geochronological limitations, and to develop more precise and quantified estimates of the pronounced climate variations that clearly affected this region during the Last Termination.
Resumo:
Bottom-up processes can interrupt ongoing cognitive processing in order to adaptively respond to emotional stimuli of high potential significance, such as those that threaten wellbeing. However it is vital that this interference can be modulated in certain contexts to focus on current tasks. Deficits in the ability to maintain the appropriate balance between cognitive and emotional demands can severely impact on day-to-day activities. This fMRI study examined this interaction between threat processing and cognition; 18 adult participants performed a visuospatial working memory (WM) task with two load conditions, in the presence and absence of anxiety induction by threat of electric shock. Threat of shock interfered with performance in the low cognitive load condition; however interference was eradicated under high load, consistent with engagement of emotion regulation mechanisms. Under low load the amygdala showed significant activation to threat of shock that was modulated by high cognitive load. A directed top-down control contrast identified two regions associated with top-down control; ventrolateral PFC and dorsal ACC. Dynamic causal modeling provided further evidence that under high cognitive load, top-down inhibition is exerted on the amygdala and its outputs to prefrontal regions. Additionally, we hypothesized that individual differences in a separate, non-emotional top-down control task would predict the recruitment of dorsal ACC and ventrolateral PFC during top-down control of threat. Consistent with this, performance on a separate dichotic listening task predicted dorsal ACC and ventrolateral PFC activation during high WM load under threat of shock, though activation in these regions did not directly correlate with WM performance. Together, the findings suggest that under high cognitive load and threat, top-down control is exerted by dACC and vlPFC to inhibit threat processing, thus enabling WM performance without threat-related interference.
Resumo:
Eudaimonic well-being—a sense of purpose, meaning, and engagement with life—is protective against psychopathology and predicts physical health, including lower levels of the stress hormone cortisol. Although it has been suggested that the ability to engage the neural circuitry of reward may promote well-being and mediate the relationship between well-being and health, this hypothesis has remained untested. To test this hypothesis, we had participants view positive, neutral, and negative images while fMRI data were collected. Individuals with sustained activity in the striatum and dorsolateral prefrontal cortex to positive stimuli over the course of the scan session reported greater well-being and had lower cortisol output. This suggests that sustained engagement of reward circuitry in response to positive events underlies well-being and adaptive regulation of the hypothalamic-pituitary-adrenal axis.
Resumo:
We examined the maturation of decision-making from early adolescence to mid-adulthood using fMRI of a variant of the Iowa gambling task. We have previously shown that performance in this task relies on sensitivity to accumulating negative outcomes in ventromedial PFC and dorsolateral PFC. Here, we further formalize outcome evaluation (as driven by prediction errors [PE], using a reinforcement learning model) and examine its development. Task performance improved significantly during adolescence, stabilizing in adulthood. Performance relied on greater impact of negative compared with positive PEs, the relative impact of which matured from adolescence into adulthood. Adolescents also showed increased exploratory behavior, expressed as a propensity to shift responding between options independently of outcome quality, whereas adults showed no systematic shifting patterns. The correlation between PE representation and improved performance strengthened with age for activation in ventral and dorsal PFC, ventral striatum, and temporal and parietal cortices. There was a medial-lateral distinction in the prefrontal substrates of effective PE utilization between adults and adolescents: Increased utilization of negative PEs, a hallmark of successful performance in the task, was associated with increased activation in ventromedial PFC in adults, but decreased activation in ventrolateral PFC and striatum in adolescents. These results suggest that adults and adolescents engage qualitatively distinct neural and psychological processes during decision-making, the development of which is not exclusively dependent on reward-processing maturation.
Resumo:
Background Recent evidence has shown that individuals with acute anorexia nervosa and those recovered have aberrant physiological responses to rewarding stimuli. We hypothesized that women recovered from anorexia nervosa would show aberrant neural responses to both rewarding and aversive disorder-relevant stimuli. Methods Using functional magnetic resonance imaging (fMRI), the neural response to the sight and flavor of chocolate, and their combination, in 15 women recovered from restricting-type anorexia nervosa and 16 healthy control subjects matched for age and body mass index was investigated. The neural response to a control aversive condition, consisting of the sight of moldy strawberries and a corresponding unpleasant taste, was also measured. Participants simultaneously recorded subjective ratings of “pleasantness,” “intensity,” and “wanting.” Results Despite no differences between the groups in subjective ratings, individuals recovered from anorexia nervosa showed increased neural response to the pleasant chocolate taste in the ventral striatum and pleasant chocolate sight in the occipital cortex. The recovered participants also showed increased neural response to the aversive strawberry taste in the insula and putamen and to the aversive strawberry sight in the anterior cingulate cortex and caudate. Conclusions Individuals recovered from anorexia nervosa have increased neural responses to both rewarding and aversive food stimuli. These findings suggest that even after recovery, women with anorexia nervosa have increased salience attribution to food stimuli. These results aid our neurobiological understanding and support the view that the neural response to reward may constitute a neural biomarker for anorexia nervosa.
Resumo:
An important constraint on how hemodynamic neuroimaging signals such as fMRI can be interpreted in terms of the underlying evoked activity is an understanding of neurovascular coupling mechanisms that actually generate hemodynamic responses. The predominant view at present is that the hemodynamic response is most correlated with synaptic input and subsequent neural processing rather than spiking output. It is still not clear whether input or processing is more important in the generation of hemodynamics responses. In order to investigate this we measured the hemodynamic and neural responses to electrical whisker pad stimuli in rat whisker barrel somatosensory cortex both before and after the local cortical injections of the GABAA agonist muscimol. Muscimol would not be expected to affect the thalamocortical input into the cortex but would inhibit subsequent intra-cortical processing. Pre-muscimol infusion whisker stimuli elicited the expected neural and accompanying hemodynamic responses to that reported previously. Following infusion of muscimol, although the temporal profile of neural responses to each pulse of the stimulus train was similar, the average response was reduced in magnitude by ∼79% compared to that elicited pre-infusion. The whisker-evoked hemodynamic responses were reduced by a commensurate magnitude suggesting that, although the neurovascular coupling relationships were similar for synaptic input as well as for cortical processing, the magnitude of the overall response is dominated by processing rather than from that produced from the thalamocortical input alone.
Resumo:
We present a dynamic causal model that can explain context-dependent changes in neural responses, in the rat barrel cortex, to an electrical whisker stimulation at different frequencies. Neural responses were measured in terms of local field potentials. These were converted into current source density (CSD) data, and the time series of the CSD sink was extracted to provide a time series response train. The model structure consists of three layers (approximating the responses from the brain stem to the thalamus and then the barrel cortex), and the latter two layers contain nonlinearly coupled modules of linear second-order dynamic systems. The interaction of these modules forms a nonlinear regulatory system that determines the temporal structure of the neural response amplitude for the thalamic and cortical layers. The model is based on the measured population dynamics of neurons rather than the dynamics of a single neuron and was evaluated against CSD data from experiments with varying stimulation frequency (1–40 Hz), random pulse trains, and awake and anesthetized animals. The model parameters obtained by optimization for different physiological conditions (anesthetized or awake) were significantly different. Following Friston, Mechelli, Turner, and Price (2000), this work is part of a formal mathematical system currently being developed (Zheng et al., 2005) that links stimulation to the blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) signal through neural activity and hemodynamic variables. The importance of the model described here is that it can be used to invert the hemodynamic measurements of changes in blood flow to estimate the underlying neural activity.
Resumo:
The difference between the rate of change of cerebral blood volume (CBV) and cerebral blood flow (CBF) following stimulation is thought to be due to circumferential stress relaxation in veins (Mandeville, J.B., Marota, J.J.A., Ayata, C., Zaharchuk, G., Moskowitz, M.A., Rosen, B.R., Weisskoff, R.M., 1999. Evidence of a cerebrovascular postarteriole windkessel with delayed compliance. J. Cereb. Blood Flow Metab. 19, 679–689). In this paper we explore the visco-elastic properties of blood vessels, and present a dynamic model relating changes in CBF to changes in CBV. We refer to this model as the visco-elastic windkessel (VW) model. A novel feature of this model is that the parameter characterising the pressure–volume relationship of blood vessels is treated as a state variable dependent on the rate of change of CBV, producing hysteresis in the pressure–volume space during vessel dilation and contraction. The VW model is nonlinear time-invariant, and is able to predict the observed differences between the time series of CBV and that of CBF measurements following changes in neural activity. Like the windkessel model derived by Mandeville, J.B., Marota, J.J.A., Ayata, C., Zaharchuk, G., Moskowitz, M.A., Rosen, B.R., Weisskoff, R.M., 1999. Evidence of a cerebrovascular postarteriole windkessel with delayed compliance. J. Cereb. Blood Flow Metab. 19, 679–689, the VW model is primarily a model of haemodynamic changes in the venous compartment. The VW model is demonstrated to have the following characteristics typical of visco-elastic materials: (1) hysteresis, (2) creep, and (3) stress relaxation, hence it provides a unified model of the visco-elastic properties of the vasculature. The model will not only contribute to the interpretation of the Blood Oxygen Level Dependent (BOLD) signals from functional Magnetic Resonance Imaging (fMRI) experiments, but also find applications in the study and modelling of the brain vasculature and the haemodynamics of circulatory and cardiovascular systems.