858 resultados para calcium signalling
Resumo:
The objective was to evaluate the effect of soy fermented product intake on the corporal weight and bone tissue of ovariectomized mature rats. This product was fermented with Enterococcusfaecium and Lactobacillus jugurti and enriched with isoflavones and calcium. The animals were divided in 5 groups: sham-ovariectomized; ovariectomized; ovariectomized treated with soy fermented product enriched with isoflavones and calcium; ovariectomized treated with soy fermented product enriched with calcium and ovariectomized treated with nonfermented product enriched only with calcium. In order to evaluate the effect of the tested product on bone tissue (femur and tibia), the following parameters were analyzed: length; mechanical assay of three points; density (Archimedes principle); mineral content; calcium content; measure of the trabecular widths. The corporal weight of group treated with soy fermented product containing isoflavones and calcium showed no statistical difference from sham-ovariectomized group and trabecular widths tended to have larger than ovariectomized group. However, there was no significant difference to the other evaluated parameters in result of the diverse treatments. Thus, soy fermented product enriched with isoflavones and calcium inhibited the increasing of corporal weight caused by ovariectomy and revealed a tendency to trabecular protection after castration.
Resumo:
This work evaluated the potential of the isoforms of methamidophos to cause organophosphorus-induced delayed neuropathy (OPIDN) in hens. In addition to inhibition of neuropathy target esterase (NTE) and acetylcholinesterase (AChE), calpain activation, spinal cord lesions and clinical signs were assessed. The isoforms (+)-, (+/-)- and (-)-methamidophos were administered at 50 mg/kg orally; tri-ortho-cresyl phosphate (TOCP) was administered (500 mg/kg, po) as positive control for delayed neuropathy. The TOCP hens showed greater than 80% and approximately 20% inhibition of NTE and AChE in hen brain, respectively. Among the isoforms of methamidophos, only the (+)-methamidophos was capable of inhibiting NTE activity (approximately 60%) with statistically significant difference compared to the control group. Calpain activity in brain increased by 40% in TOCP hens compared to the control group when measured 24h after dosing and remained high (18% over control) 21 days after dosing. Hens that received (+)-methamidophos had calpain activity 12% greater than controls. The histopathological findings and clinical signs corroborated the biochemical results that indicated the potential of the (+)-methamidophos to be the isoform responsible for OPIDN induction. Protection against OPIDN was examined using a treatment of 2 doses of nimodipine (1 mg/kg, i.m.) and one dose of calcium gluconate (5 mg/kg, iv.). The treatment decreased the effect of OPIDN-inducing TOCP and (+)-methamidophos on calpain activity, spinal cord lesions and clinical signs. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
To examine the efficacy of calcium gluconate (two doses of Ca-Glu 5 mg/kg i.v.) to alleviate the injurious effects of organophosphorus induced delayed neuropathy (OPIDN) in the presence or absence of phenylmethanesulfonyl fluoride (PMSF go mg/kg i.m.), 14 groups of four isabrown hens were used. To measure the lymphocyte neuropathy target esterase (LNTE)activity, groups receiving just distilled water (control), groups receiving just Tri-orto-cresyl phosphate (TOCP; 500 mg/kg p.o.) (Positive control), and other groups receiving TOCP and Ca-Glu or PMSF simultaneously or 12 hours later following intoxication by TOCP were used. They were sacrificed 12 and 24 hours after the administration of TOCP. To observe a 28-day time course of neurotoxicity scores and calcium plasma concentration, five groups were used. Regarding free Ca(2+)in the plasma, the positive control produced a characteristic profile time course up and down (luring 28 days, and some hens with maximum score of neurotoxicity in 28 days. The treatment, which prevented greater oscillation in free Ca(2+) in the plasma, presented a decrease in OPIDN in relation to the positive control. Twelve hours after the administration of TOCP, LNTE was 70-80% inhibited when compared with control, whereas the first decrease in the free Ca(2+) in the plasma was significantly different from the control only 24 hours after the administration of TOCP. In summary, the sooner the Ca-Glu is started, the less severe the neuropathy effects.