979 resultados para biogenic carbonate
Resumo:
Holes 572C and 573A provide high resolution (about 5000-yr. sampling interval) records of oxygen and carbon isotope stratigraphy (Globigerinoides sacculifera) and carbonate stratigraphy for the Pliocene of the equatorial Pacific. These data enable detailed correlation of carbonate events between sites and provide additional resolution to the previous carbonate stratigraphy. Comparison of calcium carbonate and d18O data reveal a "Pacific-type" carbonate stratigraphy throughout the Pliocene. The d18O data have two modes of variability with a boundary at 2.9 Ma. The planktonic d18O record does not have a steplike enrichment at 3.2 Ma, which is observed in benthic records elsewhere, suggesting that this event does not represent the proposed initiation of northern hemispheric glaciation. Hole 572C does record a distinct d18O enrichment event at about 2.4 Ma, which has been previously associated with the onset of major ice rafting in the North Atlantic.
Resumo:
Cobalt doped magnetite (CoxFe3-xO4) nanoparticles have been produced through the microbial reduction of cobalt-iron oxyhydroxide by the bacterium Geobacter sulfurreducens. The materials produced, as measured by SQUID, x-ray magnetic circular dichroism, Mössbauer spectroscopy, etc., show dramatic increases in coercivity with increasing cobalt content without a major decrease in overall saturation magnetization. Structural and magnetization analyses reveal a reduction in particle size to <4 nm at the highest Co content, combined with an increase in the effective anisotropy of the magnetic nanoparticles. The potential use of these biogenic nanoparticles in aqueous suspensions for magnetic hyperthermia applications is demonstrated. Further analysis of the distribution of cations within the ferrite spinel indicates that the cobalt is predominantly incorporated in octahedral coordination, achieved by the substitution of Fe2+ site with Co2+, with up to 17 per cent Co substituted into tetrahedral sites.
Resumo:
For Middle Jurassic to Pleistocene times, clay mineralogical and geochemical data provide information on the evolution of continental and marine paleoenvironments. They are a source of information on marginal instability, on the continental and shallow marine environments related to the development of the Southern Ocean during the Middle and Late Jurassic, and on tectonic relaxation of the continental margins at the end of the Late Jurassic. They also provide evidence for the influences of the South Atlantic opening and the movement of the Falkland Plateau in a reduced marine environment until Aptian-Albian times, and the transition to an open marine environment during Albian time; the influences of the Albian-Turonian and Coniacian-Santonian Andean deformations in an open marine environment; the limited tectonic effects and strong influence of marine currents at the Cretaceous/Tertiary boundary; the influences of the global climatic cooling and inferred bottom water circulation during the late Eocene and Oligocene; the widening of the South Atlantic Ocean during Oligocene time, which was accompanied by an increased influence of the biogenic components on sedimentation; increased carbonate dissolution from late Oligocene to early Miocene, related to the deepening of the ocean; limited mineralogical and important geochemical modifications when the Drake Passage opened in the early Miocene; the influence of the late Miocene development of the Antarctic ice-sheet; the major Antarctic cooling and Patagonian glaciation during Pliocene time; and the change in the Antarctic Bottom Water circulation at the Pliocene/Pleistocene boundary.
Resumo:
Chemoherm carbonates, as well as numerous other types of methane seep carbonates, were discovered in 2004 along the passive margin of the northern South China Sea. Lithologically, the carbonates are micritic containing peloids, clasts and clam fragments. Some are highly brecciated with aragonite layers of varying thicknesses lining fractures and voids. Dissolution and replacement is common. Mineralogically, the carbonates are dominated by high magnesium calcites (HMC) and aragonite. Some HMCs with MgCO3 contents of between 30-38 mol%-extreme-HMC, occur in association with minor amounts of dolomite. All of the carbonates are strongly depleted in d13C, with a range from -35.7 to -57.5 per mil PDB and enriched in d18O (+ 4.0 to + 5.3 per mil PDB). Abundant microbial rods and filaments were recognized within the carbonate matrix as well as aragonite cements, likely fossils of chemosynthetic microbes involved in carbonate formation. The microbial structures are intimately associated with mineral grains. Some carbonate mineral grains resemble microbes. The isotope characteristics, the fabrics, the microbial structure, and the mineralogies are diagnostic of carbonates derived from anaerobic oxidation of methane mediated by microbes. From the succession of HMCs, extreme-HMC, and dolomite in layered tubular carbonates, combined with the presence of microbial structure and diagenetic fabric, we suggest that extreme-HMC may eventually transform into dolomites. Our results add to the worldwide record of seep carbonates and establish for the first time the exact locations and seafloor morphology where such carbonates formed in the South China Sea. Characteristics of the complex fabric demonstrate how seep carbonates may be used as archives recording multiple fluid regimes, dissolution, and early transformation events.
Resumo:
Based on the study of 10 sediment cores and 40 core-top samples from the South China Sea (SCS) we obtained proxy records of past changes in East Asian monsoon climate on millennial to bidecadal time scales over the last 220,000 years. Climate proxies such as global sea level, estimates of paleotemperature, salinity, and nutrients in surface water, ventilation of deep water, paleowind strength, freshwater lids, fluvial and/or eolian sediment supply, and sediment winnowing on the sea floor were derived from planktonic and benthic stable-isotope records, the distribution of siliciclastic grain sizes, planktonic foraminifera species, and the UK37 biomarker index. Four cores were AMS-14C-dated. Two different regimes of monsoon circulation dominated the SCS over the last two glacial cycles, being linked to the minima and maxima of Northern Hemisphere solar insolation. (1) Glacial stages led to a stable estuarine circulation and a strong O2-minimum layer via a closure of the Borneo sea strait. Strong northeast monsoon and cool surface water occurred during winter, in part fed by an inflow from the north tip of Luzon. In contrast, summer temperatures were as high as during interglacials, hence the seasonality was strong. Low wetness in subtropical South China was opposed to large river input from the emerged Sunda shelf, serving as glacial refuge for tropical forest. (2) Interglacials were marked by a strong inflow of warm water via the Borneo sea strait, intense upwelling southeast of Vietnam and continental wetness in China during summer, weaker northeast monsoon and high sea-surface temperatures during winter, i.e. low seasonality. On top of the long-term variations we found millennial- to centennial-scale cold and dry, warm and humid spells during the Holocene, glacial Terminations I and II, and Stage 3. The spells were coeval with published variations in the Indian monsoon and probably, with the cold Heinrich and warm Dansgaard-Oeschger events recorded in Greenland ice cores, thus suggesting global climatic teleconnections. Holocene oscillations in the runoff from South China centered around periodicities of 775 years, ascribed to subharmonics of the 1500-year cycle in oceanic thermohaline circulation. 102/84-year cycles are tentatively assigned to the Gleissberg period of solar activity. Phase relationships among various monsoon proxies near the onset of Termination IA suggest that summer-monsoon rains and fluvial runoff from South China had already intensified right after the last glacial maximum (LGM) insolation minimum, coeval with the start of Antarctic ice melt, prior to the d18O signals of global sea-level rise. Vice versa, the strength of winter-monsoon winds decreased in short centennial steps only 3000-4000 years later, along with the melt of glacial ice sheets in the Northern Hemisphere.
Resumo:
Ocean acidification leads to changes in marine carbonate chemistry that are predicted to cause a decline in future coral reef calcification. Several laboratory and mesocosm experiments have described calcification responses of species and communities to increasing CO2. The few in situ studies on natural coral reefs that have been carried out to date have shown a direct relationship between aragonite saturation state (Omega arag) and net community calcification (Gnet). However, these studies have been performed over a limited range of Omega arag values, where extrapolation outside the observational range is required to predict future changes in coral reef calcification. We measured extreme diurnal variability in carbonate chemistry within a reef flat in the southern Great Barrier Reef, Australia. Omega arag varied between 1.1 and 6.5, thus exceeding the magnitude of change expected this century in open ocean subtropical/tropical waters. The observed variability comes about through biological activity on the reef, where changes to the carbonate chemistry are enhanced at low tide when reef flat waters are isolated from open ocean water. We define a relationship between net community calcification and Omega arag, using our in situ measurements. We find net community calcification to be linearly related to Omega arag, while temperature and nutrients had no significant effect on Gnet. Using our relationship between Gnet and Omega arag, we predict that net community calcification will decline by 55% of its preindustrial value by the end of the century. It is not known at this stage whether exposure to large variability in carbonate chemistry will make reef flat organisms more or less vulnerable to the non-calcifying physiological effects of increasing ocean CO2 and future laboratory studies will need to incorporate this natural variability to address this question.
Resumo:
Through scanning electron microscope analysis of sediment microfabric, we have evaluated variations in high-resolution shipboard physical properties (index properties and shear strength), sediment components (smear slide determinations), and shore-based calcium carbonate and biogenic silica data from Site 751 (Kerguelen Plateau). The stratigraphic section at this site records a change in biogenic ooze composition from predominantly calcareous (nannofossil) to siliceous (diatom) ooze from ~23 Ma to the present, reflecting expansion of Antarctic water masses during the late Neogene. The profound change in physical properties and sediment character at 40.1 mbsf (~5-6 Ma) evidently records the northward movement of the Polar Front and a change in absolute accumulation rates of sediment at this site. Trends in geotechnical properties with depth at Site 751 allowed us to subdivide the sedimentary column into a number of geotechnical units that reflect changes in depositional and postdepositional processes with time. Geotechnical properties are sensitive to changing sedimentary inputs of primarily siliceous and calcareous microfossils. This allows us to study the physical nature of biostratigraphically-identified hiatuses and variations in environmental conditions linked to the migration of the Polar Front across this region. The analysis of geotechnical properties permits a more detailed division of the sedimentary column than is possible from shipboard lithologic descriptions alone. Our study of the sedimentary microfabric indicates that randomly oriented, elongate pennate diatom valves compose the sediments with highest porosity and water content values, and the lowest density values (wet bulk, dry bulk, and grain density). Conversely, sediments composed of nannofossils and disassociated nannofossil crystallites and little or no siliceous remains have the lowest porosity and water content values, and the highest density values. Samples of mixed siliceous/calcareous composition have intermediate physical property values, but these vary according to the nature of the sedimentary matrix and the state of preservation of individual skeletal elements.