997 resultados para biocatalytic application


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a classical two- and three-body interaction potential to simulate the hydroxylated, natively oxidized Si surface in contact with water solutions, based on the combination and extension of the Stillinger-Weber potential and of a potential originally developed to simulate SiO(2) polymorphs. The potential parameters are chosen to reproduce the structure, charge distribution, tensile surface stress, and interactions with single water molecules of a natively oxidized Si surface model previously obtained by means of accurate density functional theory simulations. We have applied the potential to the case of hydrophilic silicon wafer bonding at room temperature, revealing maximum room temperature work of adhesion values for natively oxidized and amorphous silica surfaces of 97 and 90 mJm(2), respectively, at a water adsorption coverage of approximately 1 ML. The difference arises from the stronger interaction of the natively oxidized surface with liquid water, resulting in a higher heat of immersion (203 vs 166 mJm(2)), and may be explained in terms of the more pronounced water structuring close to the surface in alternating layers of larger and smaller densities with respect to the liquid bulk. The computed force-displacement bonding curves may be a useful input for cohesive zone models where both the topographic details of the surfaces and the dependence of the attractive force on the initial surface separation and wetting can be taken into account.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Potential energy can be approximated by ‘‘pair-functional’’ potentials which is composed of pair potentials and embedding energy. Pair potentials are grouped according to discrete directions of atomic bonds such that each group is represented by an orientational component. Meanwhile, another kind of component, the volumetric one is derived from embedding energy. Damage and fracture are the changing and breaking of atomic bonds at the most fundamental level and have been reflected by the changing of these components’ properties. Therefore, material is treated as a component assembly, and its constitutive equations are formed by means of assembling these two kinds of components’ response functions. This material model is referred to as the component assembling model. Theoretical analysis and numerical computing indicate that the proposed model has the capacity of reproducing some results satisfactorily, with the advantages of physical explicitness and intrinsic induced anisotropy, etc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Turbulence and aeroacoustic noise high-order accurate schemes are required, and preferred, for solving complex flow fields with multi-scale structures. In this paper a super compact finite difference method (SCFDM) is presented, the accuracy is analysed and the method is compared with a sixth-order traditional and compact finite difference approximation. The comparison shows that the sixth-order accurate super compact method has higher resolving efficiency. The sixth-order super compact method, with a three-stage Runge-Kutta method for approximation of the compressible Navier-Stokes equations, is used to solve the complex flow structures induced by vortex-shock interactions. The basic nature of the near-field sound generated by interaction is studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the theory of the pumping well test, the transient injection well test was suggested in this paper. The design method and the scope of application are discussed in detail. The mathematical models are developed for the short-time and long-time transient injection test respectively. A double logarithm type curve matching method was introduced for analyzing the field transient injection test data. A set of methods for the transient injection test design, experiment performance and data analysis were established. Some field tests were analyzed, and the results show that the test model and method are suitable for the transient injection test and can be used to deal with the real engineering problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the importance of investigation on terrestrical processes in arid areas for mankind's living environment protection and local economy development as well as its present state of the art are elucidated. A coupling model, which evaluates heat, mass, momentum and radiative fluxes in the SPAC system, is developed for simulating microclimate over plant and bare soil. Especially, it is focussed on the details of turbulence transfer. For illustration, numerical simulation of the water-heat exchange processes at Shapotou Observatory, GAS, Ninxia Province are conducted, and the computational results show that the laws of land-surface processes are rather typical in the arid areas.