899 resultados para binary to multi-class classifiers


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work compares and contrasts results of classifying time-domain ECG signals with pathological conditions taken from the MITBIH arrhythmia database. Linear discriminant analysis and a multi-layer perceptron were used as classifiers. The neural network was trained by two different methods, namely back-propagation and a genetic algorithm. Converting the time-domain signal into the wavelet domain reduced the dimensionality of the problem at least 10-fold. This was achieved using wavelets from the db6 family as well as using adaptive wavelets generated using two different strategies. The wavelet transforms used in this study were limited to two decomposition levels. A neural network with evolved weights proved to be the best classifier with a maximum of 99.6% accuracy when optimised wavelet-transform ECG data wits presented to its input and 95.9% accuracy when the signals presented to its input were decomposed using db6 wavelets. The linear discriminant analysis achieved a maximum classification accuracy of 95.7% when presented with optimised and 95.5% with db6 wavelet coefficients. It is shown that the much simpler signal representation of a few wavelet coefficients obtained through an optimised discrete wavelet transform facilitates the classification of non-stationary time-variant signals task considerably. In addition, the results indicate that wavelet optimisation may improve the classification ability of a neural network. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Boolean input systems are in common used in the electric industry. Power supplies include such systems and the power converter represents these. For instance, in power electronics, the control variable are the switching ON and OFF of components as thyristors or transistors. The purpose of this paper is to use neural network (NN) to control continuous systems with Boolean inputs. This method is based on classification of system variations associated with input configurations. The classical supervised backpropagation algorithm is used to train the networks. The training of the artificial neural network and the control of Boolean input systems are presented. The design procedure of control systems is implemented on a nonlinear system. We apply those results to control an electrical system composed of an induction machine and its power converter.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We propose a simple yet computationally efficient construction algorithm for two-class kernel classifiers. In order to optimise classifier's generalisation capability, an orthogonal forward selection procedure is used to select kernels one by one by minimising the leave-one-out (LOO) misclassification rate directly. It is shown that the computation of the LOO misclassification rate is very efficient owing to orthogonalisation. Examples are used to demonstrate that the proposed algorithm is a viable alternative to construct sparse two-class kernel classifiers in terms of performance and computational efficiency.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The 1930s witnessed an intense struggle between gas and electricity suppliers for the working class market, where the incumbent utility—gas—was also a reasonably efficient (and cheaper) General Purpose Technology for most domestic uses. Local monopolies for each supplier boosted substitution effects between fuel types—as alternative fuels constituted the only local competition. Using newly-rediscovered returns from a major national household expenditure survey, we employ geographically-determined instrumental variables, more commonly used in the industrial organization literature, to show that gas provided a significant competitor, tempering electricity prices, while electricity demand was also responsive to marketing initiatives.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Gaussian multi-scale representation is a mathematical framework that allows to analyse images at different scales in a consistent manner, and to handle derivatives in a way deeply connected to scale. This paper uses Gaussian multi-scale representation to investigate several aspects of the derivation of atmospheric motion vectors (AMVs) from water vapour imagery. The contribution of different spatial frequencies to the tracking is studied, for a range of tracer sizes, and a number of tracer selection methods are presented and compared, using WV 6.2 images from the geostationary satellite MSG-2.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new class of shape features for region classification and high-level recognition is introduced. The novel Randomised Region Ray (RRR) features can be used to train binary decision trees for object category classification using an abstract representation of the scene. In particular we address the problem of human detection using an over segmented input image. We therefore do not rely on pixel values for training, instead we design and train specialised classifiers on the sparse set of semantic regions which compose the image. Thanks to the abstract nature of the input, the trained classifier has the potential to be fast and applicable to extreme imagery conditions. We demonstrate and evaluate its performance in people detection using a pedestrian dataset.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recent research in multi-agent systems incorporate fault tolerance concepts, but does not explore the extension and implementation of such ideas for large scale parallel computing systems. The work reported in this paper investigates a swarm array computing approach, namely 'Intelligent Agents'. A task to be executed on a parallel computing system is decomposed to sub-tasks and mapped onto agents that traverse an abstracted hardware layer. The agents intercommunicate across processors to share information during the event of a predicted core/processor failure and for successfully completing the task. The feasibility of the approach is validated by simulations on an FPGA using a multi-agent simulator, and implementation of a parallel reduction algorithm on a computer cluster using the Message Passing Interface.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The development of a set of multi-channel dichroics which includes a 6 channel dichroic operating over the wavelength region from 0.3 to 52µm is described. In order to achieve the optimum performance, the optical constants of PbTe, Ge and CdTe coatings in the strongly absorptive region have been determined by use of a new iterative method using normal incidence reflectance measurement of the multilayer together with initial values of energy gap Eg and infinite refractive index n for the semiconductor model. The design and manufacture of the dichroics is discussed and the final results are presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents the initial research carried out into a new neural network called the multilayer radial basis function network (MRBF). The network extends the radial basis function (RBF) in a similar way to that in which the multilayer perceptron extends the perceptron. It is hoped that by connecting RBFs together in a layered fashion, an equivalent increase in ability can be gained, as is gained from using MLPs instead of single perceptrons. The results of a practical comparison between individual RBFs and MRBF's are also given.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The consistency of precipitation variability estimated from the multiple satellite-based observing systems is assessed. There is generally good agreement between TRMM TMI, SSM/I, GPCP and AMSRE datasets for the inter-annual variability of precipitation since 1997 but the HOAPS dataset appears to overestimate the magnitude of variability. Over the tropical ocean the TRMM 3B42 dataset produces unrealistic variabilitys. Based upon deseasonalised GPCP data for the period 1998-2008, the sensitivity of global mean precipitation (P) to surface temperature (T) changes (dP/dT) is about 6%/K, although a smaller sensitivity of 3.6%/K is found using monthly GPCP data over the longer period 1989-2008. Over the tropical oceans dP/dT ranges from 10-30%/K depending upon time-period and dataset while over tropical land dP/dT is -8 to -11%/K for the 1998-2008 period. Analyzing the response of the tropical ocean precipitation intensity distribution to changes in T we find the wetter area P shows a strong positive response to T of around 20%/K. The response over the drier tropical regimes is less coherent and varies with datasets, but responses over the tropical land show significant negative relationships over an interannual time-scale. The spatial and temporal resolutions of the datasets strongly influence the precipitation responses over the tropical oceans and help explain some of the discrepancy between different datasets. Consistency between datasets is found to increase on averaging from daily to 5-day time-scales and considering a 1o (or coarser) spatial resolution. Defining the wet and dry tropical ocean regime by the 60th percentile of P intensity, the 5-day average, 1o TMI data exhibits a coherent drying of the dry regime at the rate of -20%/K and the wet regime becomes wetter at a similar rate with warming.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present an efficient strategy for mapping out the classical phase behavior of block copolymer systems using self-consistent field theory (SCFT). With our new algorithm, the complete solution of a classical block copolymer phase can be evaluated typically in a fraction of a second on a single-processor computer, even for highly segregated melts. This is accomplished by implementing the standard unit-cell approximation (UCA) for the cylindrical and spherical phases, and solving the resulting equations using a Bessel function expansion. Here the method is used to investigate blends of AB diblock copolymer and A homopolymer, concentrating on the situation where the two molecules are of similar size.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper proposes a practical approach to the enhancement of Quality of Service (QoS) routing by means of providing alternative or repair paths in the event of a breakage of a working path. The proposed scheme guarantees that every Protected Node (PN) is connected to a multi-repair path such that no further failure or breakage of single or double repair paths can cause any simultaneous loss of connectivity between an ingress node and an egress node. Links to be protected in an MPLS network are predefined and a Label Switched path (LSP) request involves the establishment of a working path. The use of multi-protection paths permits the formation of numerous protection paths allowing greater flexibility. Our analysis examined several methods including single, double and multi-repair routes and the prioritization of signals along the protected paths to improve the Quality of Service (QoS), throughput, reduce the cost of the protection path placement, delay, congestion and collision. Results obtained indicated that creating multi-repair paths and prioritizing packets reduces delay and increases throughput in which case the delays at the ingress/egress LSPs were low compared to when the signals had not been classified. Therefore the proposed scheme provided a means to improve the QoS in path restoration in MPLS using available network resources. Prioritizing the packets in the data plane has revealed that the amount of traffic transmitted using a medium and low priority Label Switch Paths (LSPs) does not have any impact on the explicit rate of the high priority LSP in which case the problem of a knock-on effect is eliminated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This article aims to create intellectual space in which issues of social inequality and education can be analyzed and discussed in relation to the multifaceted and multi-levelled complexities of the modern world. It is divided into three sections. Section One locates the concept of social class in the context of the modern nation state during the period after the Second World War. Focusing particularly on the impact of ‘Fordism’ on social organization and cultural relations, it revisits the articulation of social justice issues in the United Kingdom, and the structures put into place at the time to alleviate educational and social inequalities. Section Two problematizes the traditional concept of social class in relation to economic, technological and sociocultural changes that have taken place around the world since the mid-1980s. In particular, it charts some of the changes to the international labour market and global patterns of consumption, and their collective impact on the re-constitution of class boundaries in ‘developed countries’. This is juxtaposed with some of the major social effects of neo-classical economic policies in recent years on the sociocultural base in developing countries. It discusses some of the ways these inequalities are reflected in education. Section Three explores tensions between the educational ideals of the ‘knowledge economy’ and the discursive range of social inequalities that are emerging within and beyond the nation state. Drawing on key motifs identified throughout, the article concludes with a reassessment of the concept of social class within the global cultural economy. This is discussed in relation to some of the major equity and human rights issues in education today.