950 resultados para auricular implant
Resumo:
Biomaterials play a fundamental role in disease management and the improvement of health care. In recent years, there has been a significant growth in the diversity, function, and number of biomaterials used worldwide. Yet, attachment of pathogenic microorganisms onto biomaterial surfaces remains a significant challenge that substantially undermines their clinical applicability, limiting the advancement of these systems. The emergence and escalating pervasiveness of antibiotic-resistant bacterial strains makes the management of biomaterial-associated nosocomial infections increasingly difficult. The conventional post-operative treatment of implant-caused infections using systemic antibiotics is often marginally effective, further accelerating the extent of antimicrobial resistance. Methods by which the initial stages of bacterial attachment and biofilm formation can be restricted or prevented are therefore sought. The surface modification of biomaterials has the potential to alleviate pathogenic biofouling, therefore preventing the need for conventional antibiotics to be applied.
Resumo:
The rising demand for medical implants for ageing populations and ongoing advancements in medical technology continue to drive the use of implantable devices. Higher implant usage has a consequent increased incidence of implant-related infections, and associated prolonged patient care, pain and loss of limb and other organ function. Numerous antibacterial surfaces have been designed that prevent the onset of biofilm formation, thus reducing or preventing implant-associated infections through inhibiting bacterial adhesion or by killing the organisms that successfully attach to the surface of the implant. Other surfaces have been designed to stimulate a local immune response, promoting the natural clearing of the invading pathogen. The desired antibacterial effects are typically achieved by modulating the surface chemistry and morphology of the implant material, by means of the controlled release of pharmacological agents and bioactive compounds from the surface of the material, or by a combination of both processes. An important issue for any type of antibacterial surface modification lies in balancing the non-fouling, bacteriostatic or bactericidal effects against local and systemic biocompatibility. In this chapter, we will first describe the concept of biocompatibility and its evolution, from devices that do not evoke a negative host response to those that actively drive host regeneration. We will then review the challenges associated with merging the need for an implant material to withstand a bacterial load with those associated with supporting function restoration and tissue healing.
Resumo:
Purpose: This paper reviews the apparatus used for deformation of bone fracture fixation plates during orthopaedic surgeries including surgical irons, pliers and bending press tools. This paper extends the review to various machineries in non-medical industries and adopts their suitability to clinics-related applications and also covers the evolution of orthopaedic bone plates. This review confirms that none of the studied machineries can be implemented for the deformation of bone fracture fixation plates during orthopaedic surgeries. In addition, this paper also presents the novel apparatus that are designed from scratch for this specific purpose. Several conceptual designs have been proposed and evaluated recently. It has been found that Computer Numerical Control (CNC) systems are not the golden solution to this problem and one needs to attempt to design the robotic arm system. A new design of robotic arm that can be used for facilitating orthopaedic surgeries is being completed.
Resumo:
Välikorvaleikkauksiin usein liittyvän välikorvan ja kuuloluuketjun kirurgisen rekonstruktion tavoitteena on luoda olosuhteet, jotka mahdollistavat hyvän kuulon sekä välikorvan säilymisen tulehduksettomana ja ilmapitoisena. Välikorvan rekonstruktiossa on käytetty implanttimateriaaleina perinteisesti potilaan omia kudoksia sekä tarvittaessa erilaisia hajoamattomia biomateriaaleja, mm. titaania ja silikonia. Ongelmana biomateriaalien käytössä voi olla bakteerien adherenssi eli tarttuminen vieraan materiaalin pintaan, mikä saattaa johtaa biofilmin muodostumiseen. Tämä voi aiheuttaa kroonisen, huonosti antibiootteihin reagoivan infektion kudoksessa, mikä usein käytännössä johtaa uusintaleikkaukseen ja implantin poistoon. Maitohappo- ja glykolihappopohjaiset biologisesti hajoavat polymeerit ovat olleet kliinisessä käytössä jo vuosikymmeniä. Niitä on käytetty erityisesti tukimateriaaleina mm. ortopediassa sekä kasvo- ja leukakirurgiassa. Niitä ei ole toistaiseksi käytetty välikorvakirurgiassa. Korvan kuvantamiseen käytetään ensisijaisesti tietokonetomografiaa (TT). TT-tutkimuksen ongelmana on potilaan altistuminen suhteellisen korkealle sädeannokselle, joka kasvaa kumulatiivisesti, jos kuvaus joudutaan toistamaan. Väitöskirjatyö selvittää uuden, aiemmin kliinisessä työssä rutiinisti lähinnä hampaiston ja kasvojen alueen kuvantamiseen käytetyn rajoitetun kartiokeila-TT:n soveltuvuutta korvan alueen kuvantamiseen. Väitöskirjan kahdessa ensimmäisessä osatyössä tutkittiin ja verrattiin kahden kroonisia ja postoperatiivisia korvainfektioita aiheuttavan bakteerin, Staphylococcus aureuksen ja Pseudomonas aeruginosan, in vitro adherenssia titaanin, silikonin ja kahden eri biohajoavan polymeerin (PLGA) pintaan. Lisäksi tutkittiin materiaalien albumiinipinnoituksen vaikutusta adherenssiin. Kolmannessa osatyössä tutkittiin eläinmallissa PLGA:n biokompatibiliteettia eli kudosyhteensopivuutta kokeellisessa välikorvakirurgiassa. Chinchillojen välikorviin istutettiin PLGA-materiaalia, eläimiä seurattiin, ja ne lopetettiin 6 kk:n kuluttua operaatiosta. Biokompatibiliteetin arviointi perustui kliinisiin havaintoihin sekä kudosnäytteisiin. Neljännessä osatyössä tutkittiin kartiokeila-TT:n soveltuvuutta korvan alueen kuvantamiseen vertaamalla sen tarkkuutta perinteisen spiraali-TT:n tarkkuuteen. Molemmilla laitteilla kuvattiin ohimo- eli temporaaliluita korvan alueen kliinisesti ja kirurgisesti tärkeiden rakenteiden kuvantumisen tarkkuuden arvioimiseksi. Viidennessä osatyössä arvioitiin myös operoitujen temporaaliluiden kuvantumista kartiokeila-TT:ssa. Bakteeritutkimuksissa PLGA-materiaalin pintaan tarttui keskimäärin korkeintaan saman verran tai vähemmän bakteereita kuin silikonin tai titaanin. Albumiinipinnoitus vähensi bakteeriadherenssia merkitsevästi kaikilla materiaaleilla. Eläinkokeiden perusteella PLGA todettiin hyvin siedetyksi välikorvassa. Korvakäytävissä tai välikorvissa ei todettu infektioita, tärykalvon perforaatioita tai materiaalin esiin työntymistä. Kudosnäytteissä näkyi lievää tulehdusreaktiota ja fibroosia implantin ympärillä. Temporaaliluutöissä rajoitettu kartiokeila-TT todettiin vähintään yhtä tarkaksi menetelmäksi kuin spiraali-TT välikorvan ja sisäkorvan rakenteiden kuvantamisessa, ja sen aiheuttama kertasäderasitus todettiin spiraali-TT:n vastaavaa huomattavasti vähäisemmäksi. Kartiokeila-TT soveltui hyvin välikorvaimplanttien ja postoperatiivisen korvan kuvantamiseen. Tulokset osoittavat, että PLGA on välikorvakirurgiaan soveltuva, turvallinen ja kudosyhteensopiva biomateriaali. Biomateriaalien pinnoittaminen albumiinilla vähentää merkittävästi bakteeriadherenssia niihin, mikä puoltaa pinnoituksen soveltamista implanttikirurgiassa. Kartiokeila-TT soveltuu korvan alueen kuvantamiseen. Sen tarkkuus kliinisesti tärkeiden rakenteiden osoittamisessa on vähintään yhtä hyvä ja sen potilaalle aiheuttama sädeannos pienempi kuin nykyisen korva-spiraali-TT:n. Tämä tekee menetelmästä spiraali-TT:aa potilasturvallisemman vaihtoehdon erityisesti, jos potilaan tilanne vaatii seurantaa ja useampia kuvauksia, ja jos halutaan kuvata rajoitettuja alueita uni- tai bilateraalisesti.
Resumo:
Background. Kidney transplantation (KTX) is considered to be the best treatment of terminal uremia. Despite improvements in short-term graft survival, a considerable number of kidney allografts are lost due to the premature death of patients with a functional kidney and to chronic allograft nephropathy (CAN). Aim. To investigate the risk factors involved in the progression of CAN and to analyze diagnostic methods for this entity. Materials and methods. Altogether, 153 implant and 364 protocol biopsies obtained between June 1996 and April 2008 were analyzed. The biopsies were classified according to Banff ’97 and chronic allograft damage index (CADI). Immunohistochemistry for TGF-β1 was performed in 49 biopsies. Kidney function was evaluated by creatinine and/or cystatin C measurement and by various estimates of glomerular filtration rate (GFR). Demographic data of the donors and recipients were recorded after 2 years’ follow-up. Results. Most of the 3-month biopsies (73%) were nearly normal. The mean CADI score in the 6-month biopsies decreased significantly after 2001. Diastolic hypertension correlated with ΔCADI. Serum creatinine concentration at hospital discharge and glomerulosclerosis were risk factors for ΔCADI. High total and LDL cholesterol, low HDL and hypertension correlated with chronic histological changes. The mean age of the donors increased from 41 -52 years. Older donors were more often women who had died from an underlying disease. The prevalence of delayed graft function increased over the years, while acute rejections (AR) decreased significantly over the years. Sub-clinical AR was observed in 4% and it did not affect long-term allograft function or CADI. Recipients´ drug treatment was modified along the Studies, being mycophenolate mophetil, tacrolimus, statins and blockers of the renine-angiotensin-system more frequently prescribed after 2001. Patients with a higher ΔCADI had lower GFR during follow-up. CADI over 2 was best predicted by creatinine, although with modest sensitivity and specificity. Neither cystatin C nor other estimates of GFR were superior to creatinine for CADI prediction. Cyclosporine A toxicity was seldom seen. Low cyclosporin A concentration after 2 h correlated with TGF- β1 expression in interstitial inflammatory cells, and this predicted worse graft function. Conclusions. The progression of CAN has been affected by two major factors: the donors’ characteristics and the recipients’ hypertension. The increased prevalence of DGF might be a consequence of the acceptance of older donors who had died from an underlying disease. Implant biopsies proved to be of prognostic value, and they are essential for comparison with subsequent biopsies. The progression of histological damage was associated with hypertension and dyslipidemia. The augmented expression of TGF-β1 in inflammatory cells is unclear, but it may be related to low immunosuppression. Serum creatinine is the most suitable tool for monitoring kidney allograft function on every-day basis. However, protocol biopsies at 6 and 12 months predicted late kidney allograft dysfunction and affected the clinical management of the patients. Protocol biopsies are thus a suitable surrogate to be used in clinical trials and for monitoring kidney allografts.
Resumo:
Fractures and arthritic joint destruction are common in the hand. A reliable and stable fracture fixation can be achieved by metal implants, which however, become unnecessary or even harmful after consolidation. The silicone implant arthroplasty is the current method of choice for reconstruction of metacarpophalangeal joints in rheumatoid patients. However, the outcome tends to worsen with long-term follow-up and implant-related complications become frequent. To address these problems, bioabsorbable implants were designed for the hand area. Aims of the studies were: 1) to evaluate the biomechanical stabilities provided by self- reinforced (SR) bioabsorbable implants in a transverse and an oblique osteotomy of small tubular bones and to compare them with those provided by metal implants; 2) to evaluate the SR poly-L/DL-lactide 70/30 plate for osteosynthesis in a proof-of-principle type of experiment in three cases of hand injuries; and 3) to evaluate the poly-L/D-lactide (PLA) 96/4 joint scaffold, a composite joint implant with a supplementary intramedullary Polyactive® stem and Swanson silicone implant in an experimental small joint arthroplasty model. Methods used were: 1) 112 fresh frozen human cadaver and 160 pig metacarpal bones osteotomised transversally or obliquely, respectively, and tested ex vivo in three point bending and in torsion; 2) three patient cases of complex hand injuries; and 3) the fifth metacarpophalangeal joints reconstructed in 18 skeletally-mature minipigs and studied radiologically and histologically. The initial fixation stabilities provided by bioabsorbable implants in the tubular bones of the hand were comparable with currently-employed metal fixation techniques, and were sufficient for fracture stabilisation in three preliminary cases in the hand. However, in torsion the stabilities provided by bioabsorbable implants were lower than that provided by metal counterparts. The bioabsorbable plate enhanced the bending stability for the bioabsorbable fixation construct. PLA 96/4 joint scaffolds demonstrated good biocompatibility and enabled fibrous tissue in-growth in situ. After scaffold degradation, a functional, stable pseudarthrosis with dense fibrous connective tissue was formed. However, the supplementary Polyactive® stem caused a deleterious tissue reaction and therefore the stem can not be applied to the composite joint implant. The bioabsorbable implants have potential for use in clinical hand surgery, but have to await validation in clinical patient series and controlled trials.
Resumo:
The role of FSH and diurnal testosterone rhythms in specific germ cell transformations during spermatogenesis were investigated using DNA flow cytometry and morphometry of the seminiferous epithelium of the adult male bonnet monkey (Macaca radiata), the endogenous hormone levels of which were altered by two different protocols. (1) Active immunization of five monkeys for 290 days using ovine FSH adsorbed on Alhydrogel resulted in the neutralization of endogenous FSH, leaving the LH and diurnal testosterone rhythms normal. (2) Desensitization of the pituitary gonadotrophs of ten monkeys by chronically infusing gonadotrophin-releasing hormone analogue, buserelin (50 micrograms/day release rate), via an Alzet pump implant (s.c.) led to a 60-80% reduction in LH and FSH as well as total abolition of testosterone rhythms. The basal testosterone level (3.3 +/- 2.0 micrograms/l), however, was maintained in this group by way of an s.c. testosterone silicone elastomer implant. Both of the treatments caused significant (P < 0.01) nearly identical reduction in testicular biopsy scores, mitotic indices and daily sperm production rates compared with respective controls. The germ cell DNA flow cytometric profiles of the two treatment groups, however, were fundamentally different from each other. The pituitary-desensitized group exhibited a significant (P < 0.001) increase in 2C (spermatogonial) and decrease in 1C (round spermatid) populations while S-phase (preleptotene spermatocytes) and 4C (primary spermatocytes) populations were normal, indicating an arrest in meiosis caused presumably by the lack of increment in nocturnal serum testosterone. In contrast, in the FSH-immunized group, at day 80 when the FSH deprivation was total, the primary block appeared to be at the conversion of spermatogonia (2C) to cells in S-phase and primary spermatocytes (4C reduced by > 90%). In addition, at this time, although the round spermatid (1C) population was reduced by 65% (P < 0.01) the elongate spermatid (HC) population showed an increase of 52% (P < 0.05). This, taken together with the fact that sperm output in the ejaculate is reduced by 80%, suggests a blockade in spermiogenesis and spermiation. Administration of booster injections of oFSH at time-points at which the antibody titre was markedly low (at days 84 and 180) resulted in a transient resurgence in spermatogenesis (at day 180 and 228), and this again was blocked by day 290 when the FSH antibody titre increased.
Resumo:
In this paper, the influence of nickel incorporation on the mechanical properties and the in vitro bioactivity of hydrogenated carbon thin films were investigated in detail. Amorphous hydrogenated carbon (a-C : H) and nickel-incorporated hydrogenated carbon (Ni/a-C : H) thin films were deposited onto the Si substrates by using reactive biased target ion beam deposition technique. The films' chemical composition, surface roughness, microstructure and mechanical properties were investigated by using XPS, AFM, TEM, nanoindentation and nanoscratch test, respectively. XPS results have shown that the film surface is mainly composed of nickel, nickel oxide and nickel hydroxide, whereas at the core is nickel carbide (Ni3C) only. The presence of Ni3C has increased the sp(2) carbon content and as a result, the mechanical hardness of the film was decreased. However, Ni/a-C : H films shows very low friction coefficient with higher scratch-resistance behavior than that of pure a-C : H film. In addition, in vitro bioactivity study has confirmed that it is possible to grow dense bone-like apatite layer on Ni/a-C : H films. Thus, the results have indicated the suitability of the films for bone-related implant coating applications. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
We report investigations on the texture, corrosion and wear behavior of ultra-fine grained (UFG) Ti-13Nb-Zr alloy, processed by equal channel angular extrusion (ECAE) technique, for biomedical applications. The microstructure obtained was characterized by X-ray line profile analysis, scanning electron microscope (SEM) and electron back scattered diffraction (EBSD). We focus on the corrosion resistance and the fretting behavior, the main considerations for such biomaterials, in simulated body fluid. To this end. potentiodynamic polarization tests were carried out to evaluate the corrosion behavior of the UFG alloy in Hanks solution at 37 degrees C. The fretting wear behavior was carried out against bearing steel in the same conditions. The roughness of the samples was also measured to examine the effect of topography on the wear behavior of the samples. Our results showed that the ECAE process increases noticeably the performance of the alloy as orthopedic implant. Although no significant difference was observed in the fretting wear behavior, the corrosion resistance of the UFG alloy was found to be higher than the non-treated material. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
There has been growing interest in understanding energy metabolism in human embryos generated using assisted reproductive techniques (ART) for improving the overall success rate of the method. Using NMR spectroscopy as a noninvasive tool, we studied human embryo metabolism to identify specific biomarkers to assess the quality of embryos for their implantation potential. The study was based on estimation of pyruvate, lactate and alanine levels in the growth medium, ISM1, used in the culture of embryos. An NMR study involving 127 embryos from 48 couples revealed that embryos transferred on Day 3 (after 72 h in vitro culture) with successful implantation (pregnancy) exhibited significantly (p < 10(-5)) lower pyruvate/alanine ratios compared to those that failed to implant. Lactate levels in media were similar for all embryos. This implies that in addition to lactate production, successfully implanted embryos use pyruvate to produce alanine and other cellular functions. While pyruvate and alanine individually have been used as biomarkers, the present study highlights the potential of combining them to provide a single parameter that correlates strongly with implantation potential. Copyright (C) 2012 John Wiley & Sons, Ltd.
Resumo:
With the rapid scaling down of the semiconductor process technology, the process variation aware circuit design has become essential today. Several statistical models have been proposed to deal with the process variation. We propose an accurate BSIM model for handling variability in 45nm CMOS technology. The MOSFET is designed to meet the specification of low standby power technology of International Technology Roadmap for Semiconductors (ITRS).The process parameters variation of annealing temperature, oxide thickness, halo dose and title angle of halo implant are considered for the model development. One parameter variation at a time is considered for developing the model. The model validation is done by performance matching with device simulation results and reported error is less than 10%.© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Resumo:
The aim of this study was to investigate the in vivo biocompatibility in terms of healing of long segmental bone defect in rabbit model as well as in vitro cytotoxicity of eluates of compression-molded High density polyethylene (HDPE)hydroxyapatite (HA)-aluminum oxide (Al2O3) composite-based implant material. Based on the physical property in terms of modulus and strength properties, as reported in our recent publication, HDPE-40 wt % HA and HDPE-20 wt % HA-20 wt % Al2O3 hybrid composites were used for biocompatibility assessment. Osteoblasts cells were cultured in conditioned media, which contains varying amount of composite eluate (0.01, 0.1, and 1.0 wt %). In vitro, the eluates did not exhibit any significant negative impact on proliferation, mineralization or on morphology of human osteoblast cells. In vivo, the histological assessment revealed neobone formation at the bone/implant interface, characterized by the presence of osteoid and osteoblasts. The observation of osteoclastic activity indicates the process of bone remodeling. No inflammation to any noticeable extent was observed at the implantation site. Overall, the combination of in vitro and in vivo results are suggestive of potential biomedical application of compression-molded HDPE- 20 wt % HA- 20 wt % Al2O3 composites to heal long segmental bone defects without causing any toxicity of bone cells.
Resumo:
Among various biologically compatible materials, hydroxyapatite (HA) has excellent bioactivity/osteointegration properties and therefore has been extensively investigated for biomedical applications. However, its inferior fracture toughness limits the wider applications of monolithic HA as a load-bearing implant. To this end, HA-based biocomposites have been developed to improve their mechanical properties (toughness and strength) without compromising biocompatibility. Despite significant efforts over last few decades, the toughness of HA-based composites could not be enhanced beyond 1.5-2 MPa m(1/2), even when measured using indentation techniques. In this perspective, the present work demonstrates how spark plasma sintering can be effectively utilized to develop hydroxyapatite titanium (HA-Ti) composites with varying amounts of Ti (5, 10 and 20 wt.%) with extremely high single edge V-notch beam fracture toughness (4-5 MPa m(1/2)) along with a good combination of elastic modulus and flexural strength. Despite predominant retention of HA and Ti, the combination of critical analysis of X-ray diffraction and transmission electron microscopy investigation confirmed the formation of the CaTi4(PO4)(6) phase with nanoscale morphology at the HA/Ti interface and the formation of such a phase has been discussed in reference to possible sintering reactions. The variations in the measured fracture toughness and work of fracture with Ti addition to the HA matrix were further rationalized using the analytical models of crack bridging as well as on the basis of the additional contribution from crack deflection. The present work opens up the opportunity to further enhance the toughness beyond 5 MPa m(1/2) by microstructural designing with the desired combination of toughening phases. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
A new species of lygosomatine scincid lizard is described from the sacred forests of Mawphlang, in Meghalaya, northeastern India. Sphenomorphus apalpebratus sp. nov. possesses a spectacle or brille, an unusual feature within the Scincidae, and a first for the paraphyletic genus Sphenomorphus. The new species is compared with other members of the genus to which it is here assigned, as well as to members of the lygosomatine genera Lipinia and Scincella from mainland India, the Andaman and Nicobar Islands, and south-east Asia, to which it also bears resemblance. The new taxon is diagnosable in exhibiting the following combination of characters: small body size (SVL to 42.0 mm); moveable eyelids absent; auricular opening scaleless, situated in a shallow depression; dorsal scales show a line of demarcation along posterior edge of ventral pes; midbody scale rows 27-28; longitudinal scale rows between parietals and base of tail 62-64; lamellae under toe IV 8-9; supraoculars five; supralabials 5-6; infralabials 4-5; subcaudals 92; and dorsum golden brown, except at dorsal margin of lateral line, which is lighter, with four faintly spotted lines, two along each side of vertebral row of scales, that extend to tail base. The new species differs from its congeners in the lack of moveable eyelids, a character shared with several distantly related scincid genera.
Resumo:
The most important property of a bone cement or a bone substitute in load bearing orthopaedic implants is good integration with host bone with reduced bone resorption and increased bone regeneration at the implant interface. Long term implantation of metal-based joint replacements often results in corrosion and particle release, initiating chronic inflammation leading onto osteoporosis of host bone. An alternative solution is the coating of metal implants with hydroxyapatite (HA) or bioglass or the use of bulk bioglass or HA-based composites. In the above perspective, the present study reports the in vivo biocompatibility and bone healing of the strontium (Sr)-stabilized bulk glass ceramics with the nominal composition of 4.5SiO(2)-3Al(2)O(3)-1.5P(2)O(5)-3SrO-2SrF(2) during short term implantation of up to 12 weeks in rabbit animal model. The progression of healing and bone regeneration was qualitatively and quantitatively assessed using fluorescence microscopy, histological analysis and micro-computed tomography. The overall assessment of the present study establishes that the investigated glass ceramic is biocompatible in vivo with regards to local effects after short term implantation in rabbit animal model. Excellent healing was observed, which is comparable to that seen in response to a commercially available implant of HA-based bioglass alone. (C) 2013 Elsevier Ltd. All rights reserved.