988 resultados para audio processing


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An increasingly common scenario in building speech synthesis and recognition systems is training on inhomogeneous data. This paper proposes a new framework for estimating hidden Markov models on data containing both multiple speakers and multiple languages. The proposed framework, speaker and language factorization, attempts to factorize speaker-/language-specific characteristics in the data and then model them using separate transforms. Language-specific factors in the data are represented by transforms based on cluster mean interpolation with cluster-dependent decision trees. Acoustic variations caused by speaker characteristics are handled by transforms based on constrained maximum-likelihood linear regression. Experimental results on statistical parametric speech synthesis show that the proposed framework enables data from multiple speakers in different languages to be used to: train a synthesis system; synthesize speech in a language using speaker characteristics estimated in a different language; and adapt to a new language. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we consider Bayesian interpolation and parameter estimation in a dynamic sinusoidal model. This model is more flexible than the static sinusoidal model since it enables the amplitudes and phases of the sinusoids to be time-varying. For the dynamic sinusoidal model, we derive a Bayesian inference scheme for the missing observations, hidden states and model parameters of the dynamic model. The inference scheme is based on a Markov chain Monte Carlo method known as Gibbs sampler. We illustrate the performance of the inference scheme to the application of packet-loss concealment of lost audio and speech packets. © EURASIP, 2010.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an automatic speaker recognition system for intelligence applications. The system has to provide functionalities for a speaker skimming application in which databases of recorded conversations belonging to an ongoing investigation can be annotated and quickly browsed by an operator. The paper discusses the criticalities introduced by the characteristics of the audio signals under consideration - in particular background noise and channel/coding distortions - as well as the requirements and functionalities of the system under development. It is shown that the performance of state-of-the-art approaches degrades significantly in presence of moderately high background noise. Finally, a novel speaker recognizer based on phonetic features and an ensemble classifier is presented. Results show that the proposed approach improves performance on clean audio, and suggest that it can be employed towards improved real-world robustness. © EURASIP, 2009.