971 resultados para atomistic defect
Resumo:
A controllable synthesis of phase pure wurtzite (WZ) ZnS nanostructures has been reported in this work at a low temperature of similar to 220 degrees C using ethylenediamine as the soft template and by varying the molar concentration of zinc to sulphur precursors as well as by using different precursors. A significant reduction in the formation temperature required for the synthesis of phase pure WZ ZnS has been observed. A strong correlation has been observed between the morphology of the synthesized ZnS nanostructures and the precursors used during synthesis. It has been found from Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) image analyses that the morphology of the ZnS nanocrystals changes from a block-like to a belt-like structure having an average length of similar to 450 nm when the molar ratio of zinc to sulphur source is increased from 1 : 1 to 1 : 3. An oriented attachment (OA) growth mechanism has been used to explain the observed shape evolution of the synthesized nanostructures. The synthesized nanostructures have been characterized by the X-ray diffraction technique as well as by UV-Vis absorption and photoluminescence (PL) emission spectroscopy. The as-synthesized nanobelts exhibit defect related visible PL emission. On isochronal annealing of the nanobelts in air in the temperature range of 100-600 degrees C, it has been found that white light emission with a Commission Internationale de I'Eclairage 1931 (CIE) chromaticity coordinate of (0.30, 0.34), close to that of white light (0.33, 0.33), can be obtained from the ZnO nanostructures obtained at an annealing temperature of 600 degrees C. UV light driven degradation of methylene blue (MB) dye aqueous solution has also been demonstrated using as-synthesized nanobelts and similar to 98% dye degradation has been observed within only 40 min of light irradiation. The synthesized nanobelts with visible light emission and having dye degradation activity can be used effectively in future optoelectronic devices and in water purification for cleaning of dyes.
Resumo:
The photoluminescence (PL) of ZnO is shown to be dependent on the excitation intensity (EI) of the laser, and the substantial shift observed in the band to band transition is attributed to the heating effect. In order to understand this phenomenon in detail, we investigate the EI dependent PL of various ZnO samples systematically from liquid nitrogen (LN) to room temperature by varying the laser power. Some of the samples exhibit substantial red shift in the band to band transition with increasing EI even in LN environment, negligible effect is observed for others. Hence, our results strongly suggest that the EI dependent PL is not a characteristic of all ZnO samples. This indicates that laser-induced heating effect is not the dominant factor that governs the shifts in the PL spectra. Rather, the defect level excitation accounts for such observation. (C) 2014 AIP Publishing LLC.
Resumo:
This study was aimed at evaluating the static shear strength and fatigue properties of the newly developed refilled friction stir spot welded AA 6061-T6 joints. The keyhole, the process disadvantage of conventional friction stir spot welding, was refilled successfully, using an additional filler plate, with specially designed tools. Two different tool profiles, namely, convex and concave, were used for the refilling process. Sound and defect free joints were obtained by the refilling process. Joints refilled with convex tools showed better static shear strength than those with the concave ones. The variation of microhardness in different regions of the weld was analysed. Fatigue tests were conducted on the lap shear specimens at a stress ratio of R=0.1. The optical micrographs of the welds after fatigue failure in both the conventional and refilled processes were examined to study the fatigue crack propagation and failure modes.
Resumo:
The healing times for the growth of thin films on patterned substrates are studied using simulations of two discrete models of surface growth: the Family model and the Das Sarma-Tamborenea (DT) model. The healing time, defined as the time at which the characteristics of the growing interface are ``healed'' to those obtained in growth on a flat substrate, is determined via the study of the nearest-neighbor height difference correlation function. Two different initial patterns are considered in this work: a relatively smooth tent-shaped triangular substrate and an atomically rough substrate with singlesite pillars or grooves. We find that the healing time of the Family and DT models on aL x L triangular substrate is proportional to L-z, where z is the dynamical exponent of the models. For the Family model, we also analyze theoretically, using a continuum description based on the linear Edwards-Wilkinson equation, the time evolution of the nearest-neighbor height difference correlation function in this system. The correlation functions obtained from continuum theory and simulation are found to be consistent with each other for the relatively smooth triangular substrate. For substrates with periodic and random distributions of pillars or grooves of varying size, the healing time is found to increase linearly with the height (depth) of pillars (grooves). We show explicitly that the simulation data for the Family model grown on a substrate with pillars or grooves do not agree with results of a calculation based on the continuum Edwards-Wilkinson equation. This result implies that a continuum description does not work when the initial pattern is atomically rough. The observed dependence of the healing time on the substrate size and the initial height (depth) of pillars (grooves) can be understood from the details of the diffusion rule of the atomistic model. The healing time of both models for pillars is larger than that for grooves with depth equal to the height of the pillars. The calculated healing time for both Family and DT models is found to depend on how the pillars and grooves are distributed over the substrate. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Shock-Boundary Layer Interaction (SBLI) often occurs in supersonic/hypersonic flow fields. Especially when accompanied by separation (termed strong interaction), the SBLI phenomena largely affect the performance of the systems where they occur, such as scramjet intakes, thus often demanding the control of the interaction. Experiments on the strong interaction between impinging shock wave and boundary layer on a flat plate at Mach 5.96 are carried out in IISc hypersonic shock tunnel HST-2. The experiments are performed at moderate flow total enthalpy of 1.3 MJ/kg and freestream Reynolds number of 4 million/m. The strong shock generated by a wedge (or shock generator) of large angle 30.96 degrees to the freestream is made to impinge on the flat plate at 95 mm (inviscid estimate) from the leading edge, due to which a large separation bubble of length (75 mm) comparable to the distance of shock impingement from the leading edge is generated. The experimental simulation of such large separation bubble with separation occurring close to the leading edge, and its control using boundary layer bleed (suction and tangential blowing) at the location of separation, are demonstrated within the short test time of the shock tunnel (similar to 600 mu s) from time resolved schlieren flow visualizations and surface pressure measurements. By means of suction - with mass flow rate one order less than the mass flow defect in boundary layer - a reduction in separation length by 13.33% was observed. By the injection of an array of (nearly) tangential jets in the direction of mainstream (from the bottom of the plate) at the location of separation - with momentum flow rate one order less than the boundary layer momentum flow defect - 20% reduction in separation length was observed, although the flow field was apparently unsteady. (C) 2014 Elsevier Masson SAS. All rights reserved.
Resumo:
Phonon interaction with electrons or phonons or with structural defects result in a phonon mode conversion. The mode conversion is governed by the frequency wave-vector dispersion relation. The control over phonon mode or the screening of phonon in graphene is studied using the propagation of amplitude modulated phonon wave-packet. Control over phonon properties like frequency and velocity opens up several wave guiding, energy transport and thermo-electric applications of graphene. One way to achieve this control is with the introduction of nano-structured scattering in the phonon path. Atomistic model of thermal energy transport is developed which is applicable to devices consisting of source, channel and drain parts. Longitudinal acoustic phonon mode is excited from one end of the device. Molecular dynamics based time integration is adopted for the propagation of excited phonon to the other end of the device. The amount of energy transfer is estimated from the relative change of kinetic energy. Increase in the phonon frequency decreases the kinetic energy transmission linearly in the frequency band of interest. Further reduction in transmission is observed with the tuning of channel height of the device by increasing the boundary scattering. Phonon mode selective transmission control have potential application in thermal insulation or thermo-electric application or photo-thermal amplification.
Resumo:
The interaction between the Fermi sea of conduction electrons and a nonadiabatic attractive impurity potential can lead to a power-law divergence in the tunneling probability of charge through the impurity. The resulting effect, known as the Fermi edge singularity (FES), constitutes one of the most fundamental many-body phenomena in quantum solid state physics. Here we report the first observation of FES for Dirac fermions in graphene driven by isolated Coulomb impurities in the conduction channel. In high-mobility graphene devices on hexagonal boron nitride substrates, the FES manifests in abrupt changes in conductance with a large magnitude approximate to e(2)/h at resonance, indicating total many-body screening of a local Coulomb impurity with fluctuating charge occupancy. Furthermore, we exploit the extreme sensitivity of graphene to individual Coulomb impurities and demonstrate a new defect-spectroscopy tool to investigate strongly correlated phases in graphene in the quantum Hall regime.
Resumo:
The temperature of allotropic phase transformation in ZnS (cubic to wurtzite) changes with pressure and particle size. In this paper we have explored the interrelation among these through a detailed study of ZnS powders obtained by a temperature-controlled high energy milling process. By employing the combined effect of temperature and pressure in an indigenously built cryomill, we have demonstrated a large-scale, low-temperature synthesis of wurtzite ZnS nanoparticles. The synthesized products have been characterized for their phase and microstructure by the use of X-ray diffraction and transmission electron microscopic techniques. Further, it has been demonstrated that the synthesized materials exhibit photoluminescence emissions in the UV-visible region with an unusual doublet pattern due to the presence of both cubic and hexagonal wurtzite domains in the same particles. By further fine-tuning the processing conditions, it may be possible to achieve controlled defect related photoluminescence emissions from the ZnS nanoparticles.
Resumo:
Molecules in their liquid crystalline phase undergo rotational motion about the long axis of the molecule and the shape adopted by the rotating molecule plays an important role in influencing the mesophase morphology. In this context, obtaining the topology and the relative orientation of the different sub-units are important steps. For studying the liquid crystalline phase, C-13 NMR spectroscopy is a convenient method and for certain specifically designed nematogens, 2-dimensional separated local field (2D-SLF) NMR spectroscopy provides a particularly simple and straightforward means of arriving at the molecular topology. We demonstrate this approach on two three ring based nematogens designed with a phenyl or a thiophene ring at one of the termini. From the C-13-H-1 dipolar couplings of the terminal carbon obtained using the 2D-SLF NMR technique, the order parameter of the local symmetry axis of the terminal phenyl ring as well as of the long molecular axis could be easily estimated. For the thiophene nematogen, the lack of symmetry of the thiophene moiety necessitates some additional computational steps. The results indicate that the thiophene unit has its local ordering axis oriented away from the long molecular axis by a small angle, consistent with a bent structure expected in view of the thiophene geometry. The experiment also demonstrates the ability of 2D-SLF NMR to provide high resolution spectra by separation of several overlapped resonances in terms of their C-13-H-1 dipolar couplings. The results are consistent with a rod-like topology of the core of the investigated mesogens. The investigation demonstrates the potential of 2D-SLF NMR C-13 spectroscopy for obtaining atomistic level information and its utility for topological studies of different mesogens.
Resumo:
Dendrimers are highly branched polymeric nanoparticles whose structure and topology, largely, have determined their efficacy in a wide range of studies performed so far. An area of immense interest is their potential as drug and gene delivery vectors. Realizing this potential, depending on the nature of cell surface-dendrimer interactions, here we report controlled model membrane penetration and reorganization, using a model supported lipid bilayer and poly(ether imine) (PETIM) dendrimers of two generations. By systematically varying the areal density of the lipid bilayers, we provide a microscopic insight, through a combination of high resolution scattering, atomic force microscopy and atomistic molecular dynamics simulations, into the mechanism of PETIM dendrimer membrane penetration, pore formation and membrane re-organization induced by such interactions. Our work represents the first systematic observation of a regular barrel-like membrane spanning pore formation by dendrimers, tunable through lipid bilayer packing, without membrane disruption.
Resumo:
Optical-pump terahertz-probe differential transmission measurements of as-prepared single layer graphene (AG) (unintentionally hole dopedwith Fermi energy E-F at similar to -180 meV), nitrogen doping compensated graphene (NDG) with E-F similar to -10 meV, and thermally annealed doped graphene (TAG) are examined quantitatively to understand the opposite signs of photoinduced dynamic terahertz conductivity Delta sigma. It is negative for AG and TAG but positive for NDG. We show that the recently proposed mechanism of multiple generations of secondary hot carriers due to Coulomb interaction of photoexcited carriers with the existing carriers together with the intraband scattering can explain the change of photoinduced conductivity sign and its magnitude. We give a quantitative estimate of Delta sigma in terms of controlling parameters-the Fermi energy E-F and momentum relaxation time tau. Furthermore, the cooling of photoexcited carriers is analyzed using a supercollision model which involves a defect mediated collision of the hot carriers with the acoustic phonons, thus giving an estimate of the deformation potential.
Resumo:
We have performed fully atomistic classical molecular dynamics simulations to calculate the effective interaction between two polyamidoamine dendrimers. Using the umbrella sampling technique, we have obtained the potential of mean force (PMF) between the dendrimers and investigated the effects of protonation level and dendrimer size on the PMF. Our results show that the interaction between the dendrimers can be tuned from purely repulsive to partly attractive by changing the protonation level. The PMF profiles are well-fitted by the sum of an exponential and a Gaussian function with the weight of the exponential function dominating over that of the Gaussian function. This observation is in disagreement with the results obtained in previous analytic C. Likos, M. Schmidt, H. Lowen, M. Ballauff, D. Potschke, and P. Lindner, Macromolecules 34, 2914 (2001)] and coarse-grained simulation I. Gotze, H. Harreis, and C. Likos, J. Chem. Phys. 120, 7761 (2004)] studies which predicted the effective interaction to be Gaussian. (C) 2014 AIP Publishing LLC.
Resumo:
We report the effect of topological as well as lattice vacancy defects on the electro-thermal transport properties of the metallic zigzag graphene nano ribbons at their ballistic limit. We employ the density function theory-Non equilibrium green's function combination to calculate the transmission details. We then present an elaborated study considering the variation in the electrical current and the heat current transport with the change in temperature as well as the voltage gradient across the nano ribbons. The comparative analysis shows, that in the case of topological defects, such as the Stone-Wales defect, the electrical current transport is minimum. Besides, for the voltage gradient of 0.5 Volt and the temperature gradient of 300 K, the heat current transport reduces by similar to 62 % and similar to 50% for the cases of Stones-Wales defect and lattice vacancy defect respectively, compared to that of the perfect one.
Resumo:
The paper presents a multiscale method for crack propagation. The coarse region is modelled by the differential reproducing kernel particle method. Fracture in the coarse scale region is modelled with the Phantom node method. A molecular statics approach is employed in the fine scale where crack propagation is modelled naturally by breaking of bonds. The triangular lattice corresponds to the lattice structure of the (111) plane of an FCC crystal in the fine scale region. The Lennard-Jones potential is used to model the atom-atom interactions. The coupling between the coarse scale and fine scale is realized through ghost atoms. The ghost atom positions are interpolated from the coarse scale solution and enforced as boundary conditions on the fine scale. The fine scale region is adaptively refined and coarsened as the crack propagates. The centro symmetry parameter is used to detect the crack tip location. The method is implemented in two dimensions. The results are compared to pure atomistic simulations and show excellent agreement. (C) 2014 Elsevier B. V. All rights reserved.
Resumo:
The present article reports a facile method for preparing the vertically-aligned 1D arrays of a new type of type II n-n TiO2/ZnO core/shell nano-heterostructures by growing the nano-shell of ZnO on the electrochemically fabricated TiO2 nanotubes core for visible light driven photoelectrochemical applications. The strong interfacial interaction at the type II heterojunction leads to an effective interfacial charge separation and charge transport. The presence of various defects such as surface states, interface states and other defects in the nano-heterostructure enable it for improved visible light photoelectrochemical performance. The presence of such defects has also been confirmed by the UV-vis absorption, cathodoluminescence, and crystallographic studies. The TiO2/ZnO core/shell nano-heterostructures exhibit strong green luminescence due to the defect transitions. The TiO2/ZnO core/shell nano-heterostructures photo-electrode show significant enhancement of visible light absorption and it provides a photocurrent density of 0.7 mA cm(-2) at 1 V vs. Ag/AgCl, which is almost 2.7 times that of the TiO2/ZnO core/shell nano-heterostructures under dark conditions. The electrochemical impedance spectroscopy results demonstrate that the substantially improved photoelectrochemical and photo-switching performance of the nano-heterostructures photo-anode is because of the enhancement of interfacial charge transfer and the increase in the charge carrier density caused by the incorporation of the ZnO nano-shell on TiO2 nanotube core.