939 resultados para apoptosis regulatory protein
Resumo:
The cystic fibrosis transmembrane conductance regulator (CFTR) protein has the ability to function as both a chloride channel and a channel regulator. The loss of these functions explains many of the manifestations of the cystic fibrosis disease (CF), including lung and pancreatic failure, meconium ileus, and male infertility. CFTR has previously been implicated in the cell regulatory volume decrease (RVD) response after hypotonic shocks in murine small intestine crypts, an effect associated to the dysfunction of an unknown swelling-activated potassium conductance. In the present study, we investigated the RVD response in human tracheal CF epithelium and the nature of the volume-sensitive potassium channel affected. Neither the human tracheal cell line CFT1, expressing the mutant CFTR-ΔF508 gene, nor the isogenic vector control line CFT1-LC3, engineered to express the βgal gene, showed RVD. On the other hand, the cell line CFT1-LCFSN, engineered to express the wild-type CFTR gene, presented a full RVD. Patch-clamp studies of swelling-activated potassium currents in the three cell lines revealed that all of them possess a potassium current with the biophysical and pharmacological fingerprints of the intermediate conductance Ca2+-dependent potassium channel (IK, also known as KCNN4). However, only CFT1-LCFSN cells showed an increase in IK currents in response to hypotonic challenges. Although the identification of the molecular mechanism relating CFTR to the hIK channel remains to be solved, these data offer new evidence on the complex integration of CFTR in the cells where it is expressed.
Resumo:
Aquatic photosynthetic organisms, including the green alga Chlamydomonas reinhardtii, induce a set of genes for a carbon-concentrating mechanism (CCM) to acclimate to CO2-limiting conditions. This acclimation is modulated by some mechanisms in the cell to sense CO2 availability. Previously, a high-CO2-requiring mutant C16 defective in an induction of the CCM was isolated from C. reinhardtii by gene tagging. By using this pleiotropic mutant, we isolated a nuclear regulatory gene, Ccm1, encoding a 699-aa hydrophilic protein with a putative zinc-finger motif in its N-terminal region and a Gln repeat characteristic of transcriptional activators. Introduction of Ccm1 into this mutant restored an active carbon transport through the CCM, development of a pyrenoid structure in the chloroplast, and induction of a set of CCM-related genes. That a 5,128-base Ccm1 transcript and also the translation product of 76 kDa were detected in both high- and low-CO2 conditions suggests that CCM1 might be modified posttranslationally. These data indicate that Ccm1 is essential to control the induction of CCM by sensing CO2 availability in Chlamydomonas cells. In addition, complementation assay and identification of the mutation site of another pleiotropic mutant, cia5, revealed that His-54 within the putative zinc-finger motif of the CCM1 is crucial to its regulatory function.
Resumo:
Caspase-3 is synthesized as a dormant proenzyme and is maintained in an inactive conformation by an Asp-Asp-Asp “safety-catch” regulatory tripeptide contained within a flexible loop near the large-subunit/small-subunit junction. Removal of this “safety catch” results in substantially enhanced autocatalytic maturation as well as increased vulnerability to proteolytic activation by upstream proteases in the apoptotic pathway such as caspase-9 and granzyme B. The safety catch functions through multiple ionic interactions that are disrupted by acidification, which occurs in the cytosol of cells during the early stages of apoptosis. We propose that the caspase-3 safety catch is a key regulatory checkpoint in the apoptotic cascade that regulates terminal events in the caspase cascade by modulating the triggering of caspase-3 activation.
Resumo:
Phosphoinositide-dependent kinase-1 (PDK-1) is a central mediator of the cell signaling between phosphoinositide 3-kinase (PI3K) and various intracellular serine/threonine kinases including Akt/protein kinase B (PKB), p70 S6 kinases, and protein kinase C. Recent studies with cell transfection experiments have implied that PDK-1 may be involved in various cell functions including cell growth and apoptosis. However, despite its pivotal role in cellular signalings, the in vivo functions of PDK-1 in a multicellular system have rarely been investigated. Here, we have isolated Drosophila PDK-1 (dPDK-1) mutants and characterized the in vivo roles of the kinase. Drosophila deficient in the dPDK-1 gene exhibited lethality and an apoptotic phenotype in the embryonic stage. Conversely, overexpression of dPDK-1 increased cell and organ size in a Drosophila PI3K-dependent manner. dPDK-1 not only could activate Drosophila Akt/PKB (Dakt1), but also substitute the in vivo functions of its mammalian ortholog to activate Akt/PKB. This functional interaction between dPDK-1 and Dakt1 was further confirmed through genetic analyses in Drosophila. On the other hand, cAMP-dependent protein kinase, which has been proposed as a possible target of dPDK-1, did not interact with dPDK-1. In conclusion, our findings provide direct evidence that dPDK-1 regulates cell growth and apoptosis during Drosophila development via the PI3K-dependent signaling pathway and demonstrate our Drosophila system to be a powerful tool for elucidating the in vivo functions and targets of PDK-1.
Resumo:
Neurotrophic factor deprivation causes apoptosis by a mechanism that requires macromolecular synthesis. This fact suggests that gene expression is necessary to achieve cell death. To identify mRNA that is expressed in apoptotic cells we used subtractive hybridization with cDNA prepared from neuronal pheochromocytoma cells. Monoamine oxidase (MAO) expression was increased in cells during nerve growth factor withdrawal-induced apoptosis. The increased apoptosis and induction of MAO was prevented by inhibition of the p38 mitogen-activated protein (MAP) kinase pathway. MAO may contribute to the apoptotic process because inhibition of MAO activity suppressed cell death. Together, these data indicate that MAO may be a target of pro-apoptotic signal transduction by the p38 MAP kinase pathway.
Resumo:
The effect of neoplastic transformation on the response to genotoxic stress is of significant clinical interest. In this study, we offer genetic evidence that the apoptotic response of neoplastically transformed cells to DNA damage requires RhoB, a member of the Rho family of actin cytoskeletal regulators. Targeted deletion of the rhoB gene did not affect cell cycle arrest in either normal or transformed cells after exposure to doxorubicin or gamma irradiation, but rendered transformed cells resistant to apoptosis. This effect was specific insofar as rhoB deletion did not affect apoptotic susceptibility to agents that do not damage DNA. However, rhoB deletion also affected apoptotic susceptibility to Taxol, an agent that disrupts microtubule dynamics. We have demonstrated that RhoB alteration mediates the proapoptotic and antineoplastic effects of farnesyltransferase inhibitors, and we show here that RhoB alteration is also crucial for farnesyltransferase inhibitors to sensitize neoplastic cells to DNA damage-induced cell death. We found RhoB to be an important determinant of long-term survival in vitro and tumor response in vivo after gamma irradiation. Our findings identify a pivotal role for RhoB in the apoptotic response of neoplastic cells to DNA damage at a novel regulatory point that may involve the actin cytoskeleton.
Resumo:
Protein kinase C δ (PKC δ) is normally activated by diacylglycerol produced from receptor-mediated hydrolysis of inositol phospholipids. On stimulation of cells with H2O2, the enzyme is tyrosine phosphorylated, with a concomitant increase in enzymatic activity. This activation does not appear to accompany its translocation to membranes. In the present study, the tyrosine phosphorylation sites of PKC δ in the H2O2-treated cells were identified as Tyr-311, Tyr-332, and Tyr-512 by mass spectrometric analysis with the use of the precursor-scan method and by immunoblot analysis with the use of phosphorylation site-specific antibodies. Tyr-311 was the predominant modification site among them. In an in vitro study, phosphorylation at this site by Lck, a non-receptor-type tyrosine kinase, enhanced the basal enzymatic activity and elevated its maximal velocity in the presence of diacylglycerol. The mutation of Tyr-311 to phenylalanine prevented the increase in this maximal activity, but replacement of the other two tyrosine residues did not block such an effect. The results indicate that phosphorylation at Tyr-311 between the regulatory and catalytic domains is a critical step for generation of the active PKC δ in response to H2O2.
Resumo:
The fate of redundant genes resulting from genome duplication is poorly understood. Previous studies indicated that ribosomal RNA genes from one parental origin are epigenetically silenced during interspecific hybridization or polyploidization. Regulatory mechanisms for protein-coding genes in polyploid genomes are unknown, partly because of difficulty in studying expression patterns of homologous genes. Here we apply amplified fragment length polymorphism (AFLP)–cDNA display to perform a genome-wide screen for orthologous genes silenced in Arabidopsis suecica, an allotetraploid derived from Arabidopsis thaliana and Cardaminopsis arenosa. We identified ten genes that are silenced from either A. thaliana or C. arenosa origin in A. suecica and located in four of the five A. thaliana chromosomes. These genes represent a variety of RNA and predicted proteins including four transcription factors such as TCP3. The silenced genes in the vicinity of TCP3 are hypermethylated and reactivated by blocking DNA methylation, suggesting epigenetic regulation is involved in the expression of orthologous genes in polyploid genomes. Compared with classic genetic mutations, epigenetic regulation may be advantageous for selection and adaptation of polyploid species during evolution and development.
Resumo:
The recently cloned NPR1 gene of Arabidopsis thaliana is a key regulator of acquired resistance responses. Upon induction, NPR1 expression is elevated and the NPR1 protein is activated, in turn inducing expression of a battery of downstream pathogenesis-related genes. In this study, we found that NPR1 confers resistance to the pathogens Pseudomonas syringae and Peronospora parasitica in a dosage-dependent fashion. Overexpression of NPR1 leads to enhanced resistance with no obvious detrimental effect on the plants. Thus, for the first time, a single gene is shown to be a workable target for genetic engineering of nonspecific resistance in plants.
Resumo:
The reduction in levels of the potentially toxic amyloid-β peptide (Aβ) has emerged as one of the most important therapeutic goals in Alzheimer's disease. Key targets for this goal are factors that affect the expression and processing of the Aβ precursor protein (βAPP). Earlier reports from our laboratory have shown that a novel cholinesterase inhibitor, phenserine, reduces βAPP levels in vivo. Herein, we studied the mechanism of phenserine's actions to define the regulatory elements in βAPP processing. Phenserine treatment resulted in decreased secretion of soluble βAPP and Aβ into the conditioned media of human neuroblastoma cells without cellular toxicity. The regulation of βAPP protein expression by phenserine was posttranscriptional as it suppressed βAPP protein expression without altering βAPP mRNA levels. However, phenserine's action was neither mediated through classical receptor signaling pathways, involving extracellular signal-regulated kinase or phosphatidylinositol 3-kinase activation, nor was it associated with the anticholinesterase activity of the drug. Furthermore, phenserine reduced expression of a chloramphenicol acetyltransferase reporter fused to the 5′-mRNA leader sequence of βAPP without altering expression of a control chloramphenicol acetyltransferase reporter. These studies suggest that phenserine reduces Aβ levels by regulating βAPP translation via the recently described iron regulatory element in the 5′-untranslated region of βAPP mRNA, which has been shown previously to be up-regulated in the presence of interleukin-1. This study identifies an approach for the regulation of βAPP expression that can result in a substantial reduction in the level of Aβ.
Resumo:
Most plants have the ability to respond to fluctuations in light to minimize damage to the photosynthetic apparatus. A proteolytic activity has been discovered that is involved in the degradation of the major light-harvesting chlorophyll a/b-binding protein of photosystem II (LHCII) when the antenna size of photosystem II is reduced upon acclimation of plants from low to high light intensities. This ATP-dependent proteolytic activity is of the serine or cysteine type and is associated with the outer membrane surface of the stroma-exposed thylakoid regions. The identity of the protease is not known, but it does not correspond to the recently identified chloroplast ATP-dependent proteases Clp and FtsH, which are homologs to bacterial enzymes. The acclimative response shows a delay of 2 d after transfer of the leaves to high light. This lag period was shown to be attributed to expression or activation of the responsible protease. Furthermore, the LHCII degradation was found to be regulated at the substrate level. The degradation process involves lateral migration of LHCII from the appressed to the nonappressed thylakoid regions, which is the location for the responsible protease. Phosphorylated LHCII was found to be a poor substrate for degradation in comparison with the unphosphorylated form of the protein. The relationship between LHCII degradation and other regulatory proteolytic processes in the thylakoid membrane, such as D1-protein degradation, is discussed.
Resumo:
The expression of desacetoxyvindoline 4-hydroxylase (D4H), which catalyzes the second to the last reaction in vindoline biosynthesis in Catharanthus roseus, appears to be under complex, multilevel developmental and light regulation. Developmental studies with etiolated and light-treated seedlings suggested that although light had variable effects on the levels of d4h transcripts, those of D4H protein and enzyme activity could be increased, depending on seedling development, up to 9- and 8-fold, respectively, compared with etiolated seedlings. However, light treatment of etiolated seedlings could stop and reverse the decline of d4h transcripts at later stages of seedling development. Repeated exposure of seedlings to light was also required to maintain the full spectrum of enzyme activity observed during seedling development. Further studies showed that a photoreversible phytochrome appeared to be involved in the activation of D4H, since red-light treatment of etiolated seedlings increased the detectable levels of d4h transcripts, D4H protein, and D4H enzyme activity, whereas far-red-light treatment completely reversed this process. Additional studies also confirmed that different major isoforms of D4H protein exist in etiolated (isoelectric point, 4.7) and light-grown (isoelectric point, 4.6) seedlings, suggesting that a component of the light-mediated activation of D4H may involve an undetermined posttranslational modification. The biological reasons for this complex control of vindoline biosynthesis may be related to the need to produce structures that could sequester away from cellular activities the cytotoxic vinblastine and vincristine dimers that are derived partially from vindoline.
Resumo:
We have identified a human cytomegalovirus cell-death suppressor, denoted vICA, encoded by the viral UL36 gene. vICA inhibits Fas-mediated apoptosis by binding to the pro-domain of caspase-8 and preventing its activation. vICA does not share significant sequence homology with FLIPs or other known suppressors of apoptosis, suggesting that this protein represents a new class of cell-death suppressors. Notably, resistance to Fas-mediated apoptosis is delayed in fibroblasts infected with viruses that encode mutant vICA, suggesting that vICA suppresses death-receptor-induced cell death in the context of viral infection. Although vICA is dispensable for viral replication in vitro, the common targeting of caspase-8 activation by diverse herpesviruses argues for an important role for this antiapoptotic mechanism in the pathogenesis of viral infection in the host, most likely in avoiding immune clearance by cytotoxic lymphocytes and natural killer cells.
Resumo:
The stress-activated protein kinase p38 is often induced by cytotoxic agents, but its contribution to cell death is ill defined. In Rat-1 cells, we found a strong correlation between activation of p38 and induction of c-Myc–dependent apoptosis. In cells with deregulated c-Myc expression but not in control cells, cis-diamminedichloroplatinum induced p38 activity and typical features of apoptosis, including internucleosomal DNA degradation, induction of caspase activities, and both nuclear (nuclear condensation and fragmentation) and extranuclear (cell blebbing) morphological alterations. The pan-caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone did not block p38 activation and the p38 inhibitor SB203580 had no detectable effect on the activation of caspases or the in vivo cleavage of several caspase substrates, suggesting that p38 and caspase activation can contribute distinct features of apoptosis. Accordingly, we found that cell blebbing was independent of caspase activity and, rather, depended on p38-sensitive changes in microfilament dynamics likely mediated by heat shock protein 27 phosphorylation. Furthermore, p38 activity contributed to both caspase-dependent and caspase-independent nuclear condensation and fragmentation, suggesting a role in an early event triggering both mechanisms of apoptosis or sensitizing the cells to the action of both types of apoptosis executioners. Inhibiting p38 also resulted in a significant enhancement in cell survival estimated by colony formation. This capacity to modulate the sensitivity to apoptosis in cells with deregulated c-Myc expression suggests an important role for p38 in tumor cell killing by chemotherapeutic agents.
Resumo:
In eukaryotes, tight regulatory mechanisms ensure the ordered progression through the cell cycle phases. The mechanisms that prevent chromosomal DNA replication from taking place more than once each cell cycle are thought to involve the function of proteins of the minichromosome maintenance (MCM) family. Here, we demonstrate that Xenopus MCM4, a member of the MCM protein family related to Spcdc21/ ScCDC54, is part of a large protein complex comprising several other MCM proteins. MCM4 undergoes cell cycle-dependent phosphorylation both in cleaving embryos and in cell-free extracts. MCM4 phosphorylation starts concomitantly with the clearing of the MCM complex from the chromatin during S phase. Phosphorylation is carried out by cdc2/cyclinB protein kinase, which phosphorylates MCM4 in vitro at identical sites as the ones phosphorylated in vivo. Phosphorylation is specific for cdc2 protein kinase since MCM4 is not a substrate for other members of the cdk family. Furthermore, phosphorylation of MCM4 dramatically reduces its affinity for the chromatin. We propose that the cell cycle-dependent phosphorylation of MCM4 is a mechanism which inactivates the MCM complex from late S phase through mitosis, thus preventing illegitimate DNA replication during that period of the cell cycle.