909 resultados para antibiotic-resistant serotypes
Resumo:
Ruminants harbour both O157:H7 and non-O157 Attaching Effacing Escherichia coli (AEEC) strains but to date only nonO157 AEEC have been shown to induce attaching effacing lesions in naturally infected animals. However, O157 may induce lesions in deliberate oral inoculation studies and persistence is considered dependent upon the bacterially encoded locus for enterocyte effacement. In concurrent infections in ruminants it is unclear whether non-O157 AEEC contribute either positively or negatively to the persistence of E. coli O157:H7. To investigate this, and prior to animal studies, E. coli O157:H7 NCTC 12900, a non-toxigenic strain that persists in conventionally reared sheep, and non-toxigenic AEEC O26:K60 isolates of sheep origin were tested for adherence to Hep-2 tissue culture alone and in competition one with another. Applied together, both strains adhered in similar numbers but lower than when either was applied separately. Pre-incubation of tissue culture with either one strain reduced significantly (P < 0.05) the extent of adherence of the strain that was applied second. It was particularly noticeable that AEEC O26 when applied first reduced adherence and inhibited microcolony formation, as demonstrated by confocal microscopy, of E. coli 01 57:H7. The possibility that prior colonisation of a ruminant by non-O157 AEEC such as O26 may antagonise O157 colonisation and persistence in ruminants is discussed. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Objectives: To determine the mutant prevention concentrations (MPCs) of ciprofloxacin and enrofloxacin against four strains of Salmonella enterica serovar Enteritidis and four strains of S. Typhimurium including one fully susceptible, one multiply resistant (MAR), one GyrA mutant and one GyrA/MAR mutant. Further, to examine mutants arising after exposure to sub-MPC concentrations of the antibiotics for susceptibility to ciprofloxacin and enrofloxacin, and cyclohexane tolerance. Methods: MICs were determined using the agar dilution method of the BSAC. The MPC was recorded as the lowest concentration of antibiotic to inhibit growth from an inoculum of 10(10) cfu. Results: The MPCs and resulting MPC/MIC ratios of enrofloxacin were generally two- to four-fold higher than for ciprofloxacin. At 24 h for both antibiotics, MPCs were lowest for the fully susceptible strains (0.25-0.5 mg/L), similar for the MAR (1-4 mg/L) and GyrA (2-4 mg/L) mutants and highest for the GyrA/MAR mutants (1-8 mg/L). MPC/MIC ratios at 24 h were 2-16 for all strains except those for the MAR strains without mutation in gyrA where the ratios were 8-64. Conclusions: The ability to eradicate Salmonella in vivo depends on many factors such as antibiotic susceptibility of the strain, dose and route of administration. It is suggested that these MPC values will be useful when considering dosing strategies. In view of the high MPC/MIC ratio, MAR strains with wild-type gyrA, although susceptible to ciprofloxacin (MICs 0.06-0.13 mg/L), may give rise to treatment failures.
Resumo:
Aim: To assess the effect of the growth promoter avilamycin on emergence and persistence of resistance in enteric bacteria in the pig. Methods and Results: Pigs ( treated with avilamycin for 3 months and controls) were challenged with multiresistant Salmonella Typhimurium DT104 and faecal counts were performed for enterococci, Escherichia coli, S. Typhimurium and Campylobacter ( before, during and 5 weeks post-treatment). Representative isolates were tested for antibiotic resistance and for the presence of resistance genes. Avilamycin-resistant Enterococci faecalis (speciated by PCR) were isolated from the treated pigs and continued to be detected for the first week after treatment had ceased. The avilamycin- resistance gene was characterized by PCR as the emtA gene and speciation by PCR. MIC profiling confirmed that more than one strain of Ent. faecalis carried this gene. There was no evidence of increased antimicrobial resistance in the E. coli, Salmonella and Campylobacter populations, although there was a higher incidence of tetB positive E. coli in the treated pigs than the controls. Conclusion: Although avilamycin selects for resistance in the native enterococci population of the pig, no resistant isolates were detected beyond 1 week post-treatment. This suggests that resistant isolates were unable to persist once selective pressure was removed and were out-competed by the sensitive microflora. Significance and Impact of the Study: Our data suggest the risk of resistant isolates becoming carcass contaminants and infecting humans could be minimized by introducing a withdrawal period after using avilamycin and prior to slaughter.
Resumo:
Currently, there are limited published data for the population dynamics of antimicrobial-resistant commensal bacteria. This study was designed to evaluate both the proportions of the Escherichia coli populations that are resistant to ampicillin at the level of the individual chicken on commercial broiler farms and the feasibility of obtaining repeated measures of fecal E. coli concentrations. Short-term temporal variation in the concentration of fecal E. coli was investigated, and a preliminary assessment was made of potential factors involved in the shedding of high numbers of ampicillin-resistant E. coli by growing birds in the absence of the use of antimicrobial drugs. Multilevel linear regression modeling revealed that the largest component of random variation in log-transformed fecal E. coli concentrations was seen between sampling occasions for individual birds. The incorporation of fixed effects into the model demonstrated that the older, heavier birds in the study were significantly more likely (P = 0.0003) to shed higher numbers of ampicillin-resistant E. coli. This association between increasing weight and high shedding was not seen for the total fecal E. coli population (P = 0.71). This implies that, in the absence of the administration of antimicrobial drugs, the proportion of fecal E. coli that was resistant to ampicillin increased as the birds grew. This study has shown that it is possible to collect quantitative microbiological data on broiler farms and that such data could make valuable contributions to risk assessments concerning the transfer of resistant bacteria between animal and human populations.
Resumo:
We investigated the short-term (7 days) and long-term (60 days) metabolic effect of high fat diet induced obesity (DIO) and weight gain in isogenic C57BL/6 mice and examined the specific metabolic differentiation between mice that were either strong-responders (SR), or non-responders (NR) to weight gain. Mice (n = 80) were fed a standard chow diet for 7 days prior to randomization into a high-fat (HF) (n = 56) or a low-fat (LF) (n = 24) diet group. The (1)H NMR urinary metabolic profiles of LF and HF mice were recorded 7 and 60 days after the diet switch. On the basis of the body weight gain (BWG) distribution of HF group, we identified NR mice (n = 10) and SR mice (n = 14) to DIO. Compared with LF, HF feeding increased urinary excretion of glycine conjugates of β-oxidation intermediate (hexanoylglycine), branched chain amino acid (BCAA) catabolism intermediates (isovalerylglycine, α-keto-β-methylvalerate and α-ketoisovalerate) and end-products of nicotinamide adenine dinucleotide (NAD) metabolism (N1-methyl-2-pyridone-5-carboxamide, N1-methyl-4-pyridone-3-carboxamide) suggesting up-regulation of mitochondrial oxidative pathways. In the HF group, NR mice excreted relatively more hexanoylglycine, isovalerylglycine, and fewer tricarboxylic acid (TCA) cycle intermediate (succinate) in comparison to SR mice. Thus, subtle regulation of ketogenic pathways in DIO may alleviate the saturation of the TCA cycle and mitochondrial oxidative metabolism.
Resumo:
A recently developed capillary electrophoresis (CE)-negative-ionisation mass spectrometry (MS) method was used to profile anionic metabolites in a microbial-host co-metabolism study. Urine samples from rats receiving antibiotics (penicillin G and streptomycin sulfate) for 0, 4, or 8 days were analysed. A quality control sample was measured repeatedly to monitor the performance of the applied CE-MS method. After peak alignment, relative standard deviations (RSDs) for migration time of five representative compounds were below 0.4 %, whereas RSDs for peak area were 7.9–13.5 %. Using univariate and principal component analysis of obtained urinary metabolic profiles, groups of rats receiving different antibiotic treatment could be distinguished based on 17 discriminatory compounds, of which 15 were downregulated and 2 were upregulated upon treatment. Eleven compounds remained down- or upregulated after discontinuation of the antibiotics administration, whereas a recovery effect was observed for others. Based on accurate mass, nine compounds were putatively identified; these included the microbial-mammalian co-metabolites hippuric acid and indoxyl sulfate. Some discriminatory compounds were also observed by other analytical techniques, but CE-MS uniquely revealed ten metabolites modulated by antibiotic exposure, including aconitic acid and an oxocholic acid. This clearly demonstrates the added value of CE-MS for nontargeted profiling of small anionic metabolites in biological samples.
Resumo:
Each human body plays host to a microbial population which is both numerically vast (at around 1014 microbial cells) and phenomenally diverse (over 1,000 species). The majority of the microbial species in the gut have not been cultured but the application of culture-independent approaches for high throughput diversity and functionality analysis has allowed characterisation of the diverse microbial phylotypes present in health and disease. Studies in monozygotic twins, showing that these retain highly similar microbiota decades after birth and initial colonisation, are strongly indicative that diversity of the microbiome is host-specific and affected by the genotype. Microbial diversity in the human body is reflected in both richness and evenness. Diversity increases steeply from birth reaching its highest point in early adulthood, before declining in older age. However, in healthy subjects there appears to be a core of microbial phylotypes which remains relatively stable over time. Studies of individuals from diverse geopraphies suggest that clusters of intestinal bacterial groups tend to occur together, constituting ‘enterotypes’. So variation in intestinal microbiota is stratified rather than continuous and there may be a limited number of host/microbial states which respond differently to environmental influences. Exploration of enterotypes and functional groups may provide biomarkers for disease and insights into the potential for new treatments based on manipulation of the microbiome. In health, the microbiota interact with host defences and exist in harmonious homeostasis which can then be disturbed by invading organisms or when ‘carpet bombing’ by antibiotics occurs. In a portion of individuals with infections, the disease will resolve itself without the need for antibiotics and microbial homeostasis with the host’s defences is restored. The administration of probiotics (live microorganisms which when administered in adequate amounts confer a health benefit on the host) represents an artificial way to enhance or stimulate these natural processes. The study of innate mechanisms of antimicrobial defence on the skin, including the production of numerous antimicrobial peptides (AMPs), has shown an important role for skin commensal organisms. These organisms may produce AMPs, and also amplify the innate immune responses to pathogens by activating signalling pathways and processing host produced AMPs. Research continues into how to enhance and manipulate the role of commensal organisms on the skin. The challenges of skin infection (including diseases caused by multiply resistant organisms) and infestations remain considerable. The potential to re-colonise the skin to replace or reduce pathogens, and exploring the relationship between microbiota elsewhere and skin diseases are among a growing list of research targets. Lactobacillus species are among the best known ‘beneficial’ bacterial members of the human microbiota. Of the approximately 120 species known, about 15 are known to occur in the human vagina. These organisms have multiple properties, including the production of lactic acid, hydrogen peroxide and bacteriocins, which render the vagina inhospitable to potential pathogens. Depletion of the of the normal Lactobacillus population and overgrowth of vaginal anaerobes, accompanied by the loss of normal vaginal acidity can lead to bacterial vaginosis – the commonest cause of abnormal vaginal discharge in women. Some vaginal anaerobes are associated with the formation of vaginal biofilms which serve to act as a reservoir of organisms which persists after standard antibiotic therapy of bacterial vaginosis and may help to account for the characteristically high relapse rate in the condition. Administration of Lactobacillus species both vaginally and orally have shown beneficial effects in the treatment of bacterial vaginosis and such treatments have an excellent overall safety record. Candida albicans is a frequent coloniser of human skin and mucosal membranes, and is a normal part of the microbiota in the mouth, gut and vagina. Nevertheless Candida albicans is the most common fungal pathogen worldwide and is a leading cause of serious and often fatal nosocomial infections. What turns this organism from a commensal to a pathogen is a combination of increasing virulence in the organism and predisposing host factors that compromise immunity. There has been considerable research into the use of probiotic Lactobacillus spp. in vaginal candidiasis. Studies in reconstituted human epithelium and monolayer cell cultures have shown that L. rhamnosus GG can protect mucosa from damage caused by Candida albicans, and enhance the immune responses of mucosal surfaces. Such findings offer the promise that the use of such probiotic bacteria could provide new options for antifungal therapy. Studies of changes of the human intestinal microbiota in health and disease are complicated by its size and diversity. The Alimentary Pharmabiotic Centre in Cork (Republic of Ireland) has the mission to ‘mine microbes for mankind’ and its work illustrates the potential benefits of understanding the gut microbiota. Work undertaken at the centre includes: mapping changes in the microbiota with age; studies of the interaction between the microbiota and the gut; potential interactions between the gut microbiota and the central nervous system; the potential for probiotics to act as anti-infectives including through the production of bacteriocins; and the characterisation of interactions between gut microbiota and bile acids which have important roles as signalling molecules and in immunity. The important disease entity where the role of the gut microbiota appears to be central is the Irritable Bowel Syndrome (IBS). IBS patients show evidence of immune activation, impaired gut barrier function and abnormal gut microbiota. Studies with probiotics have shown that these organisms can exert anti-inflammatory effects in inflammatory bowel disease and may strengthen the gut barrier in IBS of the diarrhoea-predominant type. Formal randomised trials of probiotics in IBS show mixed results with limited benefit for some but not all. Studies confirm that administered probiotics can survive and temporarily colonise the gut. They can also stimulate the numbers of other lactic acid bacilli in the gut, and reduce the numbers of pathogens. However consuming live organisms is not the only way to influence gut microbiota. Dietary prebiotics are selectively fermented ingredients that can change the composition and/or activity of the gastrointestinal microbiota in beneficial ways. Dietary components that reach the colon, and are available to influence the microbiota include poorly digestible carbohydrates, such as non-starch polysaccharides, resistant starch, non-digestible oligosaccharides (NDOs) and polyphenols. Mixtures of probiotic and prebiotic ingredients that can selectively stimulate growth or activity of health promoting bacteria have been termed ‘synbiotics’. All of these approaches can influence gut microbial ecology, mainly to increase bifidobacteria and lactobacilli, but metagenomic approaches may reveal wider effects. Characterising how these changes produce physiological benefits may enable broader use of these tactics in health and disease in the future. The current status of probiotic products commercially available worldwide is less than ideal. Prevalent problems include misidentification of ingredient organisms and poor viability of probiotic microorganisms leading to inadequate shelf life. On occasions these problems mean that some commercially available products cannot be considered to meet the definition of a probiotic product. Given the potential benefits of manipulating the human microbiota for beneficial effects, there is a clear need for improved regulation of probiotics. The potential importance of the human microbiota cannot be overstated. ‘We feed our microbes, they talk to us and we benefit. We just have to understand and then exploit this.’ (Willem de Vos).
Resumo:
BACKGROUND Methyl benzimidazole carbamate (MBC) fungicides are used to control the oilseed rape pathogen Pyrenopeziza brassicae. Resistance to MBCs has been reported in P. brassicae, but the molecular mechanism(s) associated with reductions in sensitivity have not been verified in this species. Elucidation of the genetic changes responsible for resistance, hypothesised to be target-site mutations in β-tubulin, will enable resistance diagnostics and thereby inform resistance management strategies. RESULTS P. brassicae isolates were classified as sensitive, moderately resistant or resistant to MBCs. Crossing P. brassicae isolates of different MBC sensitivities indicated that resistance was conferred by a single gene. The MBC-target encoding gene β-tubulin was cloned and sequenced. Reduced MBC sensitivity of field isolates correlated with β-tubulin amino acid substitutions L240F and E198A. The highest level of MBC resistance was measured for isolates carrying E198A. Negative cross-resistance between MBCs and the fungicides diethofencarb and zoxamide was only measured in E198A isolates. PCR-RFLP was used to screen isolates for the presence of L240F and E198A. The substitutions E198G and F200Y were also detected in DNA samples from P. brassicae populations after cloning and sequencing of PCR products. The frequencies of L240F and E198A in different P. brassicae populations were quantified by pyrosequencing. There were no differences in the frequencies of these alleles between P. brassicae populations sampled from different locations or after fungicide treatment regimes. CONCLUSIONS The molecular mechanisms affecting sensitivity to MBCs in P. brassicae have been identified. Pyrosequencing assays are a powerful tool for quantifying fungicide-resistant alleles in pathogen populations.
Resumo:
Poorer people are more likely to use antibiotics; inappropriate antibiotic use causes resistance, and health campaigns attempt to change behaviour through education. However, fuelled by the media, the public think antibiotic resistance is outside their control. Differences in the attribution of blame for antibiotic resistance in two genres of UK newspapers, targeting distinct socioeconomic groups, were examined using a mixed methods approach. Firstly, depiction of blame was categorised as either external to the lay public (outside their control) or internal (lay person accountable) and subjected to a chi-square test. Secondly, using critical discourse analysis, we examined the portrayal of the main agents through newspaper language. Data from 597 articles (307 broadsheets) analysed revealed a significant association between newspaper genre and attribution of blame for antibiotic resistance. While both newspaper types blamed antibiotic resistance predominantly on factors external to the lay public, broadsheets were more likely to acknowledge internal factors than tabloids. Tabloids provided a more skewed representation, exposing readers to inaccurate explanations about antibiotic resistance. They highlighted ineptitude in health professionals, victimising patients and blaming others, while broadsheets used less emotive language. Pharmacists should take special care to communicate the importance of appropriate antibiotic use against this backdrop of distortion.
Resumo:
Resistant starch (RS) has been shown to beneficially affect insulin sensitivity in healthy individuals and those with metabolic syndrome, but its effects on human type 2 diabetes (T2DM) are unknown. This study aimed to determine the effects of increased RS consumption on insulin sensitivity and glucose control and changes in postprandial metabolites and body fat in T2DM. Seventeen individuals with well-controlled T2DM (HbA1c 46.6±2 mmol/mol) consumed, in a random order, either 40 g of type 2 RS (HAM-RS2) or a placebo, daily for 12 weeks with a 12-week washout period in between. At the end of each intervention period, participants attended for three metabolic investigations: a two-step euglycemic–hyperinsulinemic clamp combined with an infusion of [6,6-2H2] glucose, a meal tolerance test (MTT) with arterio-venous sampling across the forearm, and whole-body imaging. HAM-RS2 resulted in significantly lower postprandial glucose concentrations (P=0.045) and a trend for greater glucose uptake across the forearm muscle (P=0.077); however, there was no effect of HAM-RS2 on hepatic or peripheral insulin sensitivity, or on HbA1c. Fasting non-esterified fatty acid (NEFA) concentrations were significantly lower (P=0.004) and NEFA suppression was greater during the clamp with HAM-RS2 (P=0.001). Fasting triglyceride (TG) concentrations and soleus intramuscular TG concentrations were significantly higher following the consumption of HAM-RS2 (P=0.039 and P=0.027 respectively). Although fasting GLP1 concentrations were significantly lower following HAM-RS2 consumption (P=0.049), postprandial GLP1 excursions during the MTT were significantly greater (P=0.009). HAM-RS2 did not improve tissue insulin sensitivity in well-controlled T2DM, but demonstrated beneficial effects on meal handling, possibly due to higher postprandial GLP1.
Resumo:
Hydrophilic interaction chromatography–mass spectrometry (HILIC–MS) was used for anionic metabolic profiling of urine from antibiotic-treated rats to study microbial–host co-metabolism. Rats were treated with the antibiotics penicillin G and streptomycin sulfate for four or eight days and compared to a control group. Urine samples were collected at day zero, four and eight, and analyzed by HILIC–MS. Multivariate data analysis was applied to the urinary metabolic profiles to identify biochemical variation between the treatment groups. Principal component analysis found a clear distinction between those animals receiving antibiotics and the control animals, with twenty-nine discriminatory compounds of which twenty were down-regulated and nine up-regulated upon treatment. In the treatment group receiving antibiotics for four days, a recovery effect was observed for seven compounds after cessation of antibiotic administration. Thirteen discriminatory compounds could be putatively identified based on their accurate mass, including aconitic acid, benzenediol sulfate, ferulic acid sulfate, hippuric acid, indoxyl sulfate, penicillin G, phenol and vanillin 4-sulfate. The rat urine samples had previously been analyzed by capillary electrophoresis (CE) with MS detection and proton nuclear magnetic resonance (1H NMR) spectroscopy. Using CE–MS and 1H NMR spectroscopy seventeen and twenty-five discriminatory compounds were found, respectively. Both hippuric acid and indoxyl sulfate were detected across all three platforms. Additionally, eight compounds were observed with both HILIC–MS and CE–MS. Overall, HILIC–MS appears to be highly complementary to CE–MS and 1H NMR spectroscopy, identifying additional compounds that discriminate the urine samples from antibiotic-treated and control rats.
Resumo:
Cassava starch, typically, has resistant starch type 3 (RS3) content of 2.4%. This paper shows that the RS3 yields can be substantially enhanced by debranching cassava starch using pullulanase followed by high pressure or cyclic high-pressure annealing. RS3 yield of 41.3% was obtained when annealing was carried out at 400 MPa/60°C for 15 min, whereas it took nearly 8 h to obtain the same yield under conventional atmospheric annealing at 60°C. The yield of RS3 could be further significantly increased by annealing under 400MPa/60°C pressure for 15 min followed by resting at atmospheric pressure for 3 h 45 min, and repeating this cycle for up to six times. Microstructural surface analysis of the product under a scanning electron microscope showed an increasingly rigid density of the crystalline structure formed, confirming higher RS3 content.
Resumo:
Alterations in the composition and metabolic activity of the gut microbiota appear to contribute to the development of obesity and associated metabolic diseases. However, the extent of this relationship remains unknown. Modulating the gut microbiota with non-digestible carbohydrates (NDC) may exert anti-obesogenic effects through various metabolic pathways including changes to appetite regulation, glucose and lipid metabolism and inflammation. The NDC vary in physicochemical structure and this may govern their physical properties and fermentation by specific gut bacterial populations. Much research in this area has focused on established prebiotics, especially fructans (i.e. inulin and fructo-oligosaccharides); however, there is increasing interest in the metabolic effects of other NDC, such as resistant dextrin. Data presented in this review provide evidence from mechanistic and intervention studies that certain fermentable NDC, including resistant dextrin, are able to modulate the gut microbiota and may alter metabolic process associated with obesity, including appetite regulation, energy and lipid metabolism and inflammation. To confirm these effects and elucidate the responsible mechanisms, further well-controlled human intervention studies are required to investigate the impact of NDC on the composition and function of the gut microbiota and at the same time determine concomitant effects on host metabolism and physiology.
Resumo:
The use of potent anticogulant rodenticide ‘resistance-breakers’ is avoided due to their higher toxicity and potential to be more hazardous in the environment [6]. However, in areas where practitioners seek to control resistant rodent infestations, their use may pose less of a risk than applications of ineffective baits. Compounds to which rodents are resistant to, do not provide effective control and create a long-term source of AR in the environment. The higher quantities of anticoagulant rodenticide used show that using ineffective compounds may extend both the period and severity of exposure to non-target animals to anticoagulant rodenticides. Conversely the effective use of resistance-breakers to control anticoagulant rodenticide-resistant rat populations results in lower environmental exposure of anticoagulant rodenticides for non-targets. Of course, the relative toxicity of the different anticoagulant rodenticides will also play an important part in overall risk assessments. However, this can be outweighed by the relative exposure to different anticoagulant rodenticides in such situations.