917 resultados para antarctic cod
Resumo:
We identify geochemical features of sedimentary organic matter in various morphostructural zones of the Antarctic sector of the Atlantic. We present background geochemical organic parameters for shelf and deep-sea sediments from the Weddell and Scotia Seas and the Bransfield Strait. Geochemical organic parameters are good indicators of environmental and facial variations in sediments and could be used for environmental monitoring of the World Ocean.
Resumo:
The 78 bryozoan species collected by the German R/V "Polarstern" during the LAMPOS cruise in April 2002, encompassing the Scotia Arc archipelagos between Tierra del Fuego and the Antarctic Peninsula, were studied to discern the biogeographical patterns of the Magellan region of South America, the Scotia Arc archipelagos and the Antarctic. The resulting dendrogram shows three clusters: an isolated one with the three easternmost archipelagos and the other two linking some of the northern and southern Scotia Arc archipelagos with Tierra del Fuego. A more comprehensive analysis using all the species previously recorded from the Scotia Arc archipelagos and adjacent areas (214 spp.) produced a clearer zoogeographical pattern without isolated clusters of localities. The Antarctic Peninsula plus the Scotia Arc archipelagos form a large cluster distinct from the Magellan-Falkland Subantarctic area. A third analysis making use of 78 genera present in the study area plus Australia and New Zealand reinforces this pattern, showing two clusters: one uniting South America and the Australian-New Zealand realm and the other linking the Scotia Arc archipelagos with the Antarctic Peninsula. These results indicate that the Scotia Arc archipelagos represent merely a very narrow bridge connecting two different bryozoan faunas with only a few bryozoan species in common between the study areas.
Resumo:
Stable isotopic records across the Cretaceous/Paleogene (K/P) boundary in Maud Rise Holes 689B and 690C indicate that significant climatic changes occurred during the latest Cretaceous, beginning approximately 500 k.y. prior to the mass extinction event and the enrichment of iridium at the K/P boundary (66.4 Ma). An oxygen isotopic decrease of ~0.7 per mil - ~1.0 per mil is recorded in the Late Cretaceous planktonic and benthic foraminifers between 66.9 and 66.6 Ma. The negative isotope excursion was followed by a positive excursion of similar magnitude between 66.6 Ma (latest Cretaceous) and ~66.3 Ma (earliest Paleocene). No other isotopic excursions of this magnitude are recorded in the planktonic and benthic microfossil records 1.0 m.y prior to, and for 2.0 m.y following the mass extinction event at the K/P boundary. The magnitude and duration of these isotopic excursions were similar to those at the Paleocene/Eocene and Eocene/Oligocene boundaries. A major d13C excursion occurred 200 k.y. prior to the boundary, involving a positive shift in planktonic and benthic d13C of ~0.5 per mil - 0.75 per mil. Similar changes observed in other deep-sea sequences indicate that this reflected a global change in d13C of the oceanic total dissolved carbon (TDC) reservoir. The magnitude of this inferred carbon reservoir change and its association with high latitude surface-water temperature changes recorded in the d18O records implies that it was linked to global climate change through feedback loops in the carbon cycle. At the K/P boundary, the surface-to-deep water d13C gradient is reduced by approximately 0.6 per mil - ~0.2 per mil. However, unlike sequences elsewhere, the planktonic-benthic d13C gradient (Delta d13C) was not eliminated in the Antarctic. The surface-to-deep water gradient was re-established gradually during the 400 k.y. following the mass extinction. Full recovery of the Delta d13C occurred by ~60.0 Ma. In addition to the reduced vertical d13C gradient across the K/P boundary, there was a negative excursion in both planktonic and benthic d13C beginning approximately 100 k.y. after the boundary (66.3 Ma). This excursion resulted in benthic d13C values in the early Paleogene that were similar to those in the pre-K/P boundary intervals. This negative shift appears to reflect a change in the d13C of the oceanic TDC reservoir shift that may have resulted from reduced carbon burial and/or increased carbon flux to the oceans. Any model that attempts to explain the demise of the oceanic plankton at the end of the Cretaceous should consider the oceanic environmental changes that were occurring prior to the massive extinction event.
Resumo:
The aim of this contribution is to supply summarized information on the distribution and numbers of marine mammals in the Antarctic. In relation to the topic of the workshop the question to be answered is: "Is there spatial or temporal variation in mammalian presence in the Antarctic area that has relevance to the operation of acoustic devices". If acoustic devices have impact on marine mammals, this does not stop at political borders. Nevertheless, since legal implementation of the Antarctic Environmental Protocol was the major stimulus behind the workshop, this contribution was asked to limit itself to the Antarctic Treaty area, that is south of 60°S.
Resumo:
Mode of access: Internet.
Resumo:
Arabic and Latin on opposite pages.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
"July 1988."