979 resultados para adhesive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To evaluate the bond strength between human dentin and composites, using two light-activated single-bottle total-etch adhesive systems with different pHs combined with chemically activated and light-activated-composites. The tested hypothesis was that the dentin bond strength is not influenced by an adhesive system of low pH, combined with chemically activated or light-activated composites. Material and Method: Flat dentin surfaces of twenty-eight human third molars were allocated in 4 groups (n=7), depending on the adhesive system: (One Step Plus-OS and Prime & Bond NT-PB) and composite (light-activated Filtek Z-100 [Z100] and chemically activated Bisfil 2B [B2B]). Each adhesive system was applied on acid-etched dentin and then one of the composites was added to form a 5 mm-high resin block. The specimens were stored in tap water (37 degrees C/24 h) and sectioned into two axes, x and y. This was done with a diamond disk under coolant irrigation to obtain beams with a cross-section area of approximately 0.8 mm(2). Each specimen was then attached to a custom-made device and submitted to the microtensile test (1 mm.min(-1)). Data were analyzed using two-way ANOVA and Tukey's tests (p<0.05). Results: the anticipated hypothesis was not confirmed (p<0.0001). The bond strengths (MPa) were not statistically different between the two adhesive systems when light-activated composite was used (OS+Z100 = 24.7 +/- 7.1(a); PB+Z100 = 23.8 +/- 5.7(a)). However, with use of the chemically activated composite (B2B), PB (7.8 +/- 3.6(b) MPa) showed significantly lower dentin bond strengths than OS (32.2 +/- 7.6(a)). Conclusion: the low pH of the adhesive system can affect the bond of chemically activated composite to dentin. on the other hand, under the present conditions, the low pH did not seem to affect the bond of light-activated composites to dentin significantly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Statement of problem. Two problems found in prostheses with resilient liners are bond failure to the acrylic resin base and increased permanent deformation due to material aging.Purpose. This in vitro study evaluated the effect of varying amounts of thermal cycling on bond strength and permanent deformation of 2 resilient denture liners bonded to an acrylic resin base.Material and methods. Plasticized acrylic resin (PermaSoft) or silicone (Softliner) resilient lining materials were processed to a heat-polymerized acrylic resin (QC-20). One hundred rectangular specimens (10 X 10-mm(2) cross-sectional area) and 100 cylindrically-shaped specimens (12.7-mm diameter X 19.0-mm height) for each liner/resin combination were used for the tensile and deformation tests, respectively. Specimen shape and liner thickness were standardized. Specimens were divided into 9 test groups (n=10) and were thermal cycled for 200, 500, 1000, 1500, 2000, 2500, 3000, 3500, and 4000 cycles. Control specimens (n=10) were stored for 24 hours in water at 37degreesC. Mean bond strength, expressed as stress at failure (MPa), was determined with a tensile test using a universal testing machine at a crosshead speed of 5 mm/min. Analysis of failure mode, expressed as a percent (%), was recorded as either cohesive, adhesive, or both, after observation. Permanent deformation, expressed as a percent (%), was determined using ADA specification no. 18. Data from both tests were examined with a 2-way analysis of variance and a Tukey test (alpha=.05).Results. For the tensile test, Softliner specimens submitted to different thermal cycling regimens demonstrated no significantly different bond strength values from the control; however, there was a significant difference between the PermaSoft control group (0.47 +/- 0.09 MPa [mean +/- SD]) and the 500 cycle group (0.46 +/- 0.07 MPa) compared to the 4000 cycle group (0.70 +/- 0.20 MPa) (P<.05). With regard to failure type, the Softliner groups presented adhesive failure (100%) regardless of specimen treatment. PermaSoft groups presented adhesive (53%), cohesive (12%), or a combined mode of failure (35%). For the deformation test, there was no significant difference among the Softliner specimens. However, a significant difference was observed between control and PermaSoft specimens after 1500 or more cycles (1.88% +/- 0.24%) (P<.05).Conclusions. This in vitro study indicated that bond strength and permanent deformation of the 2 resilient denture liners tested varied according to their chemical composition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: This study was conducted to analyze microleakage in Class V cavity preparation, using rewetting (or not) just after burr or Er:YAG laser preparation of enamel and dentin walls in permanent teeth. Background Data: Several studies reported microleakage around composite restorations when cavity preparation was done or treated by Er:YAG laser. As the hybridized laser is removed when this laser is used to cut dental hard tissue, there is a need for new materials or techniques to minimize gaps and microleakage. Results: Primer solution showed significant effect in enamel and dentin, at the level of 5%, when Er:YAG laser was used as a cutting tool. Using primer solution after phosphoric acid in preparations with the laser, microleakage was similar in degree to when cavities were prepared with the burr. Conclusion: Re-wetting surface just after Er:YAG irradiation and chemical treatment with phosphoric acid using HEMA aqueous solution seems to improve the quality of bioattachment between the adhesive system and enamel/dentin, showing similarities between restoration behaviors independently of the cutting tool, whether burr or laser.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To evaluate the linear polymerization shrinkage (LPS) and the effect of polymerization shrinkage of a resin composite and resin-dentin bond strength under different boundary conditions and filling techniques.Methods: Two cavities (4 x 4 x 2 MM) were prepared in bovine incisors (n = 30). The teeth were divided into three groups, according to boundary conditions: In group TE, the total-etch technique was used. In group EE, only enamel was conditioned, and in group NE, none of the watts of the cavities were conditioned. A two-step adhesive system was applied to all cavities. The resin composite was inserted in one (B) or three increments (1), and tight-cured with 600 mW/cm(2) (80 s). The LPS (%) was measured in the top-bottom direction, by placing a probe in contact with resin composite during curing. Enamel and total mean gap widths were measured (400 x) in three slices obtained after sectioning the restorations. Then, the slices were sectioned again, either to obtain sticks from the adhesive interface from the bottom of the cavity or to obtain resin composite sticks (0.8 mm(2)) to be tested for tensile strength (Kratos machine, 0.5 mm/min). The data was subjected to a two-way repeated measures ANOVA and Tukey's test for comparison of the means (alpha = 0.05).Results: the highest percentage of LPS was found for the TE when bulk fitted, and the lowest percentage of LPS was found in the Hand NE when incrementally fitted. The resin dentin bond strength was higher and the total mean gap width was tower for TE group; no significant effect was detected for the main factor fitting techniques. No difference was detected for the tensile strength of resin composite among the experimental groups.Conclusions: the filling technique is not able to minimize effects of the polymerization shrinkage, and bonding to the cavity watts is necessary to assure reduced mean gap width and high bond strength values. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To determine the influence of different dentin treatments on the microtensile bond strengths of adhesive resins to dentin. Methods: Fifteen human molars were ground to 600-grit to obtain flat root-dentin surfaces. Five different dentin treatments were evaluated: Group 1 - 10% phosphoric acid for 30 seconds; Group 2 - 37% phosphoric acid for 15 seconds; Group 3 - air-abrasion for 10 seconds followed by 10% phosphoric acid for 30 seconds; Group 4 - air-abasion for 10 seconds followed by 37% phosphoric acid for 15 seconds. The dental adhesive (OptiBond Solo Plus) was applied according to manufacturer's instructions and followed by composite (Z100) application to provide sufficient bulk for microtensile bond testing. All samples were placed in distilled water for 24 hours at 37degreesC, thermocycled for 500 cycles in distilled water at 10degreesC and 50degreesC, and serially sliced perpendicular to the adhesive surface and subjected to tensile forces (0.5 mm/minute). Additional samples were prepared for SEM to observe the adhesive interface. Results: Group 2 exhibited significantly (P< 0.05) lower bond strength values than all other treatments. The bond strengths of the different conditions were (in MPa): Group 1: 43.0 +/- 16.1; Group 2: 29.2 +/- 8.3; Group 3: 48.1 +/- 14.2; Group 4: 41.0 +/- 9.3. The dentin treated with phosphoric acid 37% for 15 seconds showed the lowest values of microtensile bond strength. The results obtained with Groups 1, 3 and 4 were statistically similar.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To evaluate the 1-year clinical performance of three self-etching adhesives (Adper Prompt L-Pop, Clearfil S-3 Bond, iBond) in posterior composite restorations using one etch&rinse adhesive (One-Step Plus) as control. Methods: Upon approval by the Institutional Review Board, 121 restorations were inserted in 38 subjects. The adhesives were applied as per manufacturers' instructions. Preparations were restored with a nanofilled resin composite (Filtek Supreme) and evaluated at baseline, 6 months, and 1 year. Statistical analyses included the Chi-square distribution with the McNemar non-parametric test (P< 0.05). Results: At 1 year, 111 restorations in 35 subjects were evaluated using the USPHS modified criteria. No significant changes were observed for the etch&rinse adhesive One-Step Plus. At 1 year the number of Alfa ratings decreased significantly for Clearfil S-3 Bond and for iBond in the categories color match, marginal staining, and marginal adaptation. For Adper Prompt L-Pop, marginal adaptation at 1 year was significantly worse than at baseline. Postoperative sensitivity to air improved significantly for Adper Prompt L-Pop, Clearfil S-3 Bond, and iBond. When the evaluation criteria were paired at 1 year, iBond resulted in a significantly lower number of Alfa ratings than any of the other adhesives for color match, marginal staining, and marginal adaptation. One-Step Plus resulted in a greater number of Alfa ratings for marginal adaptation than either Adper Prompt L-Pop or Clearfil S-3 Bond. Marginal adaptation was significantly better for Clearfil S-3 Bond than for Adper Prompt L-Pop. The post-operative sensitivity measured at 1 year for Adper Prompt L-Pop was statistically better than that for One-Step Plus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To evaluate the influence of different cross-head speeds on shear bond strength test on the dentin surface.Methods: One hundred and twenty extracted bovine incisors were embedded in polystyrene resin. The specimens were prepared by wet grinding with 320-, 400- and 600-grit Al2O3 paper exposing dentin. After the application of the adhesive system Single Bond (3M) to etched dentin, the composite resin Z-100 (3M) was applied and light cured. The specimens were randomly assigned to four groups (n = 30). The shear bond strength tests were performed with an EMIC DL 500 universal testing machine at four different cross-head speeds: 0.50 (A); 0.75 (B); 1.00 (C); and 5.00 mm/min (D).Results: the mean values of shear bond strength in MPa (SD) were: A, 11.78 (3.91); B, 11.82 (4.78); C, 16.32 (6.45); D, 15.46 (5.94). The data were analyzed with one-way ANOVA and Tukey's test (alpha = 0.05). The results indicated that A = B < C = D. The fracture pattern was evaluated by visual analysis in a stereomicroscope (25 x). The percentage of fractures that occurred at the adhesive interface were: A, 92.5%; B, 91.6%; C, 70.0%; D, 47.0%. The Student's t-test to percentages ( = 0.05) indicated that there were no significant differences among A, B and C; A and B differed from D, and there was no significant difference between C and D.Significance: Different cross-head speeds may influence the shear bond strength and the fracture pattern in dentin substrate. Shear bond strength using cross-head speeds of 0.50 and 0.75 mm/min should be preferred. (C) 2001 Academy of Dental Materials. published by Elsevier B.V. Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study compared the microtensile bond strength of a repair resin to an alumina-reinforced feldspathic ceramic (Vitadur-alpha, Vita) after 3 surface conditioning methods: Group 1, etching with 9.6% hydrofluoric acid for 1 minute plus rinsing and drying, followed by application of silane for 5 minutes; group 2, airborne particle abrasion with 110-mm aluminum oxide using a chairside air-abrasion device followed by silane application for 5 minutes; group 3, chairside tribochemical silica coating with 30-mu m SiOx followed by silane application for 5 minutes (N = 30). Group 1 presented the highest mean bond strength (19.7 +/- 3.8 MPa), which was significantly higher than those of groups 2 (10 +/- 2.6 MPa) and 3 (10.4 +/- 4 MPa) (P <.01). Scanning electron microscope analysis of the failure modes demonstrated predominantly mixed types of failures, with adhesive and/or cohesive failures in all experimental groups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Statement of problem. It is not clear how different glass ceramic surface pretreatments influence the bonding capacity of various luting agents to these surfaces.Purpose. The purpose of this study was to evaluate the microtensile bond strength (mu TBS) of 3 resin cements to a lithia disilicate-based ceramic submitted to 2 surface conditioning treatments.Material and methods. Eighteen 5 X 6 X 8-mm ceramic (IPS Empress 2) blocks were fabricated according to manufacturer's instructions and duplicated in composite resin (Tetric Ceram). Ceramic blocks were polished and divided into 2 groups (n=9/treatment): no conditioning (no-conditioning/control), or 5% hydrofluoric acid etching for 20 seconds and silanization for 1 minute (HF + SIL). Ceramic blocks were cemented to the composite resin blocks with I self-adhesive universal resin cement (RelyX Unicem) or 1 of 2 resin-based luting agents (Multilink or Panavia F), according to the manufacturer's instructions. The composite resin-ceramic blocks were stored in humidity at 37 degrees C for 7 days and serially sectioned to produce 25 beam specimens per group with a 1.0-mm(2) cross-sectional area. Specimens were thermal cycled (5000 cycles, 5 degrees C-55 degrees C) and tested in tension at 1 mm/min. Microtensile bond strength data (MPa) were analyzed by 2-way analysis of variance and Tukey multiple comparisons tests (alpha=.05). Fractured specimens were examined with a stereomicroscope (X40) and classified as adhesive, mixed, or cohesive.Results. The surface conditioning factor was significant (HF+SIL > no-conditioning) (P<.0001). Considering the unconditioned groups, the mu TBS of RelyX Unicem was significantly higher (9.6 +/- 1.9) than that of Multilink (6.2 +/- 1.2) and Panavia F (7.4 +/- 1.9). Previous etching and silanization yielded statistically higher mu TBS values for RelyX Unicem (18.8 +/- 3.5) and Multilink (17.4 +/- 3.0) when compared to Panavia F (15.7 +/- 3.8). Spontaneous debonding after thermal cycling was detected when luting agents were applied to untreated ceramic surfaces.Conclusion. Etching and silanization treatments appear to be crucial for resin bonding to a lithia disilicate-based ceramic, regardless of the resin cement used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this research was to test the control of Brevipalpus phoenicis (Geijskes, 1939) by the hexythiazox and quinometionato products in citrus crop with and without adhesive spread and when submitted to artificial rain. The plants were sprayed at 2, 4, 8, 24 and 48 hours. When dried, the fruits were collected (eight/plants) and half of them were washed in laboratory with artificial rainfall on the basis of 30 mm/h during 15 minutes establishing the following treatments: T1 - hexythiazox + washing; T2 - hexythiazox + agral + washing; T3 - quinometionato + washing; T4 - quinometionato + agral + washing; T5 - control + agral + washing; T6 - hexythiazox; T7 - hexythiazox + agral; T8 - quinometionato; T9 - quinometionato + agral; T10 - control + agral. Thus, all the fruits were inoculated with ten females of B. phoenicis and five days later the mites alive were counted and eliminated. Approximately 15 days later the number of larvae alive were also counted. The results obtained allowed the following conclusions: a) the acaricides were efficient to control B. phoenicis; b) the rainfall (washing) did not alter the efficiency; c) the agral did not change the results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives. This study evaluated the effect of two different surface conditioning methods on the repair bond strength of a bis-GMA-adduct/bis-EMA/TEGDMA based resin composite after three aging conditions.Methods. Thirty-six composite resin blocks (Esthet X, Dentsply) were prepared (5 mm x 6 mm x 6 mm) and randomly assigned into three groups for aging process: (a) immersion in citric acid (pH 3.0 at 37 degrees C, 1 week) (CA); (b) boiling in water for 8h (BW) and (c) thermocycling (x5000, 5-55 degrees C, dwell time: 30s) (TC). After aging, the blocks were assigned to one of the following surface conditioning methods: (1) silica coating (30 mu m SiOx) (CoJet, 3M ESPE) + silane (ESPE-Sil) (CJ), (2) phosphoric acid + adhesive resin (Single Bond, 3M ESPE) (PA). Resin composite (Esthet.X (R)) was bonded to the conditioned substrates incrementally and light polymerized. The experimental groups formed were as follows: Gr1:CA + PA; Gr2:CA + CJ Gr3:BW + PA; Gr4: BW + CJ; Gr5:TC + PA; Gr6: TC + CJ. The specimens were sectioned in two axes (x and y) with a diamond disc under coolant irrigation in order to obtain non-trimmed bar specimens (sticks, 10 mm x 1 mm x 1 mm) with 1 mm(2) of bonding area. The microtensile test was accomplished in a universal testing machine (crosshead speed: 0.5 mm min(-1)).Results. The means and standard deviations of bond strength (MPa +/- S.D.) per group were as follows: Gr1: 25.5 +/- 10.3; Gr2: 46.3 +/- 10.1; Gr3: 21.7 +/- 7.1; Gr4: 52.3 +/- 15.1; GrS: 16.1 +/- 5.1; Gr6, 49.6 +/- 13.5. The silica coated groups showed significantly higher mean bond values after all three aging conditions (p < 0.0001) (two-way ANOVA and Tukey tests, alpha = 0.05). The interaction effect revealed significant influence of TC aging on both silica coated and acid etched groups compared to the other aging methods (p < 0.032). Citric acid was the least aggressive aging medium.Significance. Chairside silica coating and silanization provided higher resin-resin bond strength values compared to acid etching with phosphoric acid followed by adhesive resin applications. Thermocycling the composite substrates resulted in the lowest repair bond strength compared to citric acid challenge or boiling in water. (C) 2006 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Statement of problem. Ceramic surface treatment is crucial for bonding to resin. High crystalline ceramics are poorly conditioned using traditional procedures.Purpose. The purpose of this study was to evaluate the effect of silica coating on a densely sintered alumina ceramic relative to its bond strength to composite, using a resin luting agent.Material and methods. Blocks (6 X 6 X 5 mm) of ceramic and composite were made. The ceramic (Procera AllCeram) surfaces were polished, and the blocks were divided into 3 groups (n = 5): SB, airborne-particle abrasion with 110-mu m Al(2)O(3); RS, silica coating using Rocatec System; and CS, silica coating using CoJet System. The treated ceramic blocks were luted to the composite (W3D Master) blocks using a resin luting agent (Panavia F). Specimens were stored in distilled water at 37 degrees C for 7 days and then Cut in 2 axes, x and y, to obtain specimens with a bonding area of approximately 0.6 mm(2) (n = 30). The specimens were loaded to failure in tension in a universal testing machine, and data were statistically analyzed using a randomized complete block design analysis of variance and Tukey's test (alpha=.05). Fractured surfaces were examined using light microscopy and scanning electron microscopy to determine the type of failure. Energy-dispersive spectroscopy was used for surface compositional analysis.Results. Mean bond strength values (MPa) of Groups RS (17.1 +/- 3.9) (P = .00015) and CS (18.5 +/- 4.7) (P=.00012) were significantly higher than the values of Group SB (12.7 +/- 2.6). There was no statistical difference between Groups RS and CS. All failures occurred at the adhesive zone.Conclusion. Tribochemical silica coating systems increased the tensile bond strength values between Panavia F and Procera AllCeram ceramic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To assess the effect of the composite surface conditioning on the microtensile bond strength of a resin cement to a composite used for inlay/onlay restorations.Materials and Methods: Forty-two blocks (6 x 6 x 4 mm) of a microfilled composite (Vita VMLC) were produced and divided into 3 groups (N = 14) by composite surface conditioning methods: Gr1 - etching with 37% phosphoric acid, washing, drying, silanization; Gr2 - air abrasion with 50-Im Al203 particles, silanization; Gr3 - chairside tribochemiCal silica coating (CoJet System), silanization. Single-Bond (one-step adhesive) was applied on the conditioned surfaces and the two resin blocks treated with the same method were cemented using RelyX ARC (dual-curing resin cement). The specimens were stored for 7 days in water at 37 degrees C and then sectioned to produce nontrimmed beam samples, which were submitted to microtensile bond strength testing (mu TBS). For statistical analysis (one-way ANOVA and Tukey's test, = 0.05), the means of the beam samples from each luted specimen were calculated (n = 7).Results: mu TBS values (MPa) of Gr2 (62.0 +/- 3.9a) and Gr3 (60.5 +/- 7.9a) were statistically similar to each other and higher than Gr1 (38.2 +/- 8.9b). The analysis of the fractured surfaces revealed that all failures occurred at the adhesive zone.Conclusion: Conditioning methods with 50-Im Al203 or tribochemical silica coating allowed bonding between resin and composite that was statistically similar and stronger than conditioning with acid etching.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: the purpose of this study was to verify if the application of the Nd:YAG laser following pretreatment of dentin with adhesive systems that were not light cured in class V cavities and were prepared with Er:YAG laser would promote better sealing of the gingival margins when compared to cavities prepared the conventional way. Background Data: Previous studies had shown that the pretreatment of dentin with laser irradiation after the application of an adhesive system is efficient in achieving higher shear bond and tensile bond strength. Materials and Methods: Er:YAG laser (Kavo-Key, Germany) with 350 mJ, 4 Hz, and 116.7 J/cm(2) was used for cavity preparation. The conventional preparation was made with diamond bur mounted in high-speed turbine. Dentin treatment was accomplished using an Nd:YAG laser (Pulse Master 1000, ADT. USA) at 60 mJ, 10 Hz, and 74.65/cm(2) following application of the adhesive system. The cavities were stored with Single Bond/Z100 and Prime & Bond NT/TPH. Eighty bovine incisors were used, and class V preparations were done at buccal and lingual surfaces divided into eight groups: (1) Er:YAG preparation + Prime & Bond NT + TPH; (2) Er:YAG preparation + Single Bond + Z100; (3) Er:YAG preparation + Single Bond + Nd:YAG + Z100; (4) Er:YAG preparation + Prime & Bond NT + Nd:YAG + TPH; (5) conventional preparation + Prime & Bond NT + TPH; (6) conventional preparation + Single Bond + Z100; (7) conventional preparation + Single Bond + Nd:YAG + Z100; (8) conventional preparation + Prime & Bond NT + Nd:YAG + TPH. All specimens were thermocycled for 300 full cycles between 5 degreesC +/- 2 degreesC and 55 degreesC +/- 2 degreesC (dwell time of 30 sec), and stored in 50% silver nitrate solution for 24 h soaked in photodeveloping solution and exposed to fluorescent light for 6 h. After this procedure, the specimens were sectioned longitudinally in 3 portions and the extension of microleakage at the gingival wall was determined following a criteria ranging from 0 to 4 using scanning electron microscopy (SEM). The medium portion sectioned of each specimen was polished and prepared for nanoleakage avaliation by SEM. Results: Kruskall-Wallis and Miller statistical tests determined that group 3 presented less microleakage and nanoleakage. Conclusion: Application of the Nd:YAG laser following pretreatment of dentin with adhesive Single Bond non-photocured Single Bond adhesive in cavities prepared with Er:YAG promote better sealing of the gingival margins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives. This study evaluated the durability of bond strength between resin cement and a feldspathic ceramic submitted to different etching regimens with and without silane coupling agent application.Methods. Thirty-two blocks (6.4 mm x 6.4 mm x 4.8 mm) were fabricated using a microparticulate feldspathic ceramic (Vita VM7), ultrasonically cleaned with water for 5 min and randomly divided into four groups, according to the type of etching agent and silanization method: method 1, etching with 10% hydrofluoric (HF) acid gel for I min + silanization; method 2, HF only; method 3, etching with 1.23% acidulated phosphate fluoride (APF) for 5 min + silanization; method 4, APF only. Conditioned blocks were positioned in their individual silicone molds and resin cement (Panavia F) was applied on the treated surfaces. Specimens were stored in distilled water (37 degrees C) for 24 h prior to sectioning. After sectioning the ceramic-cement blocks in x- and Y-axis with a bonded area of approximately 0.6 mm(2), the microsticks of each block were randomly divided into two storage conditions: Dry, immediate testing; TC, thermal cycling (12,000 times) + water storage for 150 d, yielding to eight experimental groups. Microtensile bond strength tests were performed in universal testing machine (cross-head speed: 1 mm/min) and failure types were noted. Data obtained (MPa) were analyzed with three-way ANOVA and Tukey's test (alpha = 0.05).Results. Significant influence of the use of silane (p < 0.0001), storage conditions (p = 0.0013) and surface treatment were observed (p = 0.0014). The highest bond strengths were achieved in both dry and thermocycled conditions when the ceramics were etched with HF acid gel and silanized (17.4 +/- 5.8 and 17.4 +/- 4.8 MPa, respectively). Silanization after HF acid gel and APT treatment increased the results dramatically (14.5 +/- 4.2-17.4 +/- 4.8 MPa) compared to non-silanized groups (2.6 +/- 0.8-8.9 +/- 3.1 MPa) where the failure type was exclusively (100%) adhesive between the cement and the ceramic.Significance. Silanization of the feldspathic ceramic surface after APF or HF acid etching increased the microtensile bond strength results significantly, with the latter providing higher results. Long-term thermocycling and water storage did not decrease the results in silanized groups. (C) 2006 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.