930 resultados para adaptive backstepping droop controller design
Resumo:
Potentiometric sensors are typically unable to carry out on-site monitoring of environmental drug contaminants because of their high limits of detection (LODs). Designing a novel ligand material for the target analyte and managing the composition of the internal reference solution have been the strategies employed here to produce for the first time a potentiometric-based direct reading method for an environmental drug contaminant. This concept has been applied to sulfamethoxazole (SMX), one of the many antibiotics used in aquaculture practices that may occur in environmental waters. The novel ligand has been produced by imprinting SMX on the surface of graphitic carbon nanostructures (CN) < 500 nm. The imprinted carbon nanostructures (ICN) were dispersed in plasticizer and entrapped in a PVC matrix that included (or not) a small amount of a lipophilic additive. The membrane composition was optimized on solid-contact electrodes, allowing near-Nernstian responses down to 5.2 μg/mL and detecting 1.6 μg/mL. The membranes offered good selectivity against most of the ionic compounds in environmental water. The best membrane cocktail was applied on the smaller end of a 1000 μL micropipette tip made of polypropylene. The tip was then filled with inner reference solution containing SMX and chlorate (as interfering compound). The corresponding concentrations were studied for 1 × 10−5 to 1 × 10−10 and 1 × 10−3 to 1 × 10−8 mol/L. The best condition allowed the detection of 5.92 ng/L (or 2.3 × 10−8 mol/L) SMX for a sub-Nernstian slope of −40.3 mV/decade from 5.0 × 10−8 to 2.4 × 10−5 mol/L.
Resumo:
International Lifesaving Congress 2007, La Coruna, Spain, December, 2007
Resumo:
The design of an Autonomous Surface Vehicle for operation in river and estuarine scenarios is presented. Multiple operations with autonomous underwater vehicles and support to AUV missions are one of the main design goals in the ROAZ system. The mechanical design issues are discussed. Hardware, software and implementation status are described along with the control and navigation system architecture. Some preliminary test results concerning a custom developed thruster are presented along with hydrodynamic drag calculations by the use of computer fluid dynamic methods.
Resumo:
Proceedings of the 10th Mediterranean Conference on Control and Automation - MED2002 Lisbon, Portugal, July 9-12, 2002
Resumo:
This paper reports the design of a new remotely operated underwater vehicle (ROV), which has been developed at the Underwater Systems and Technology Laboratory (USTL) - University of Porto. This design is contextualized on the KOS project (Kits for underwater operations). The main issues addressed here concern directional drag minimization, symmetry, optimized thruster positioning, stability and layout of ROV components. This design is aimed at optimizing ROV performance for a set of different operational scenarios. This is achieved through modular configurations which are optimized for each different scenario.
Resumo:
This paper analyses the performance of a genetic algorithm (GA) in the synthesis of digital circuits using two novel approaches. The first concept consists in improving the static fitness function by including a discontinuity evaluation. The measure of variability in the error of the Boolean table has similarities with the function continuity issue in classical calculus. The second concept extends the static fitness by introducing a fractional-order dynamical evaluation.
Resumo:
First IFAC Workshop on Fractional Differentiation and Its Application - 19-21 July 2004, Enseirb, Bordeaux, France - FDA'04
Resumo:
A novel control technique is investigated in the adaptive control of a typical paradigm, an approximately and partially modeled cart plus double pendulum system. In contrast to the traditional approaches that try to build up ”complete” and ”permanent” system models it develops ”temporal” and ”partial” ones that are valid only in the actual dynamic environment of the system, that is only within some ”spatio-temporal vicinity” of the actual observations. This technique was investigated for various physical systems via ”preliminary” simulations integrating by the simplest 1st order finite element approach for the time domain. In 2004 INRIA issued its SCILAB 3.0 and its improved numerical simulation tool ”Scicos” making it possible to generate ”professional”, ”convenient”, and accurate simulations. The basic principles of the adaptive control, the typical tools available in Scicos, and others developed by the authors, as well as the improved simulation results and conclusions are presented in the contribution.
Resumo:
Relatório de Estágio apresentado para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Novos Media e Práticas Web
Resumo:
Teaching and learning computer programming is as challenging as difficult. Assessing the work of students and providing individualised feedback to all is time-consuming and error prone for teachers and frequently involves a time delay. The existent tools and specifications prove to be insufficient in complex evaluation domains where there is a greater need to practice. At the same time Massive Open Online Courses (MOOC) are appearing revealing a new way of learning, more dynamic and more accessible. However this new paradigm raises serious questions regarding the monitoring of student progress and its timely feedback. This paper provides a conceptual design model for a computer programming learning environment. This environment uses the portal interface design model gathering information from a network of services such as repositories and program evaluators. The design model includes also the integration with learning management systems, a central piece in the MOOC realm, endowing the model with characteristics such as scalability, collaboration and interoperability. This model is not limited to the domain of computer programming and can be adapted to any complex area that requires systematic evaluation with immediate feedback.
Resumo:
It is imperative to accept that failures can and will occur, even in meticulously designed distributed systems, and design proper measures to counter those failures. Passive replication minimises resource consumption by only activating redundant replicas in case of failures, as typically providing and applying state updates is less resource demanding than requesting execution. However, most existing solutions for passive fault tolerance are usually designed and configured at design time, explicitly and statically identifying the most critical components and their number of replicas, lacking the needed flexibility to handle the runtime dynamics of distributed component-based embedded systems. This paper proposes a cost-effective adaptive fault tolerance solution with a significant lower overhead compared to a strict active redundancy-based approach, achieving a high error coverage with the minimum amount of redundancy. The activation of passive replicas is coordinated through a feedback-based coordination model that reduces the complexity of the needed interactions among components until a new collective global service solution is determined, improving the overall maintainability and robustness of the system.
Resumo:
Neste documento descreve-se o projeto desenvolvido na unidade curricular de Tese e Dissertação durante o 2º ano do Mestrado de Engenharia Eletrotécnica e de Computadores no ramo de Automação e Sistemas, no Departamento de Engenharia Eletrotécnica (DEE) do Instituto Superior de Engenharia do Porto (ISEP). O projeto escolhido teve como base o uso da tecnologia das redes neuronais para implementação em sistemas de controlo. Foi necessário primeiro realizar um estudo desta tecnologia, perceber como esta surgiu e como é estruturada. Por último, abordar alguns casos de estudo onde as redes neuronais foram aplicadas com sucesso. Relativamente à implementação, foram consideradas diferentes estruturas de controlo, e entre estas escolhidas a do sistema de controlo estabilizador e sistema de referência adaptativo. No entanto, como o objetivo deste trabalho é o estudo de desempenho quando aplicadas as redes neuronais, não se utilizam apenas estas como controlador. A análise exposta neste trabalho trata de perceber em que medida é que a introdução das redes neuronais melhora o controlo de um processo. Assim sendo, os sistemas de controlo utilizados devem conter pelo menos uma rede neuronal e um controlador PID. Os testes de desempenho são aplicados no controlo de um motor DC, sendo realizados através do recurso ao software MATLAB. As simulações efetuadas têm diferentes configurações de modo a tirar conclusões o mais gerais possível. Assim, os sistemas de controlo são simulados para dois tipos de entrada diferentes, e com ou sem a adição de ruído no sensor. Por fim, é efetuada uma análise das respostas de cada sistema implementado e calculados os índices de desempenho das mesmas.
Resumo:
Further improvements in demand response programs implementation are needed in order to take full advantage of this resource, namely for the participation in energy and reserve market products, requiring adequate aggregation and remuneration of small size resources. The present paper focuses on SPIDER, a demand response simulation that has been improved in order to simulate demand response, including realistic power system simulation. For illustration of the simulator’s capabilities, the present paper is proposes a methodology focusing on the aggregation of consumers and generators, providing adequate tolls for the demand response program’s adoption by evolved players. The methodology proposed in the present paper focuses on a Virtual Power Player that manages and aggregates the available demand response and distributed generation resources in order to satisfy the required electrical energy demand and reserve. The aggregation of resources is addressed by the use of clustering algorithms, and operation costs for the VPP are minimized. The presented case study is based on a set of 32 consumers and 66 distributed generation units, running on 180 distinct operation scenarios.
Resumo:
This paper presents a decision support methodology for electricity market players’ bilateral contract negotiations. The proposed model is based on the application of game theory, using artificial intelligence to enhance decision support method’s adaptive features. This model is integrated in AiD-EM (Adaptive Decision Support for Electricity Markets Negotiations), a multi-agent system that provides electricity market players with strategic behavior capabilities to improve their outcomes from energy contracts’ negotiations. Although a diversity of tools that enable the study and simulation of electricity markets has emerged during the past few years, these are mostly directed to the analysis of market models and power systems’ technical constraints, making them suitable tools to support decisions of market operators and regulators. However, the equally important support of market negotiating players’ decisions is being highly neglected. The proposed model contributes to overcome the existing gap concerning effective and realistic decision support for electricity market negotiating entities. The proposed method is validated by realistic electricity market simulations using real data from the Iberian market operator—MIBEL. Results show that the proposed adaptive decision support features enable electricity market players to improve their outcomes from bilateral contracts’ negotiations.