864 resultados para Zinc powder


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Superoxide and superoxide-derived oxidants have been hypothesized to be important mediators of postischemic injury. Whereas copper,zinc-superoxide dismutase, SOD1, efficiently dismutates superoxide, there has been controversy regarding whether increasing intracellular SOD1 expression would protect against or potentiate cellular injury. To determine whether increased SOD1 protects the heart from ischemia and reperfusion, studies were performed in a newly developed transgenic mouse model in which direct measurement of superoxide, contractile function, bioenergetics, and cell death could be performed. Transgenic mice with overexpression of human SOD1 were studied along with matched nontransgenic controls. Immunoblotting and immunohistology demonstrated that total SOD1 expression was increased 10-fold in hearts from transgenic mice compared with nontransgenic controls, with increased expression in both myocytes and endothelial cells. In nontransgenic hearts following 30 min of global ischemia a reperfusion-associated burst of superoxide generation was demonstrated by electron paramagnetic resonance spin trapping. However, in the transgenic hearts with overexpression of SOD1 the burst of superoxide generation was almost totally quenched, and this was accompanied by a 2-fold increase in the recovery of contractile function, a 2.2-fold decrease in infarct size, and a greatly improved recovery of high energy phosphates compared with that in nontransgenic controls. These results demonstrate that superoxide is an important mediator of postischemic injury and that increasing intracellular SOD1 dramatically protects the heart from this injury. Thus, increasing intracellular SOD1 expression may be a highly effective approach to decrease the cellular injury that occurs following reperfusion of ischemic tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zinc finger domains are structures that mediate sequence recognition for a large number of DNA-binding proteins. These domains consist of sequences of amino acids containing cysteine and histidine residues tetrahedrally coordinated to a zinc ion. In this report, we present a means to selectively inhibit a zinc finger transcription factor with cobalt(III) Schiff-base complexes. 1H NMR spectroscopy confirmed that the structure of a zinc finger peptide is disrupted by axial ligation of the cobalt(III) complex to the nitrogen of the imidazole ring of a histidine residue. Fluorescence studies reveal that the zinc ion is displaced from the model zinc finger peptide in the presence of the cobalt complex. In addition, gel-shift and filter-binding assays reveal that cobalt complexes inhibit binding of a complete zinc finger protein, human transcription factor Sp1, to its consensus sequence. Finally, a DNA-coupled conjugate of the cobalt complexes selectively inhibited Sp1 in the presence of several other transcription factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Millions of people worldwide suffer from nutritional imbalances of essential metals like zinc. These same metals, along with pollutants like cadmium and lead, contaminate soils at many sites around the world. In addition to posing a threat to human health, these metals can poison plants, livestock, and wildlife. Deciphering how metals are absorbed, transported, and incorporated as protein cofactors may help solve both of these problems. For example, edible plants could be engineered to serve as better dietary sources of metal nutrients, and other plant species could be tailored to remove metal ions from contaminated soils. We report here the cloning of the first zinc transporter genes from plants, the ZIP1, ZIP2, and ZIP3 genes of Arabidopsis thaliana. Expression in yeast of these closely related genes confers zinc uptake activities. In the plant, ZIP1 and ZIP3 are expressed in roots in response to zinc deficiency, suggesting that they transport zinc from the soil into the plant. Although expression of ZIP2 has not been detected, a fourth related Arabidopsis gene identified by genome sequencing, ZIP4, is induced in both shoots and roots of zinc-limited plants. Thus, ZIP4 may transport zinc intracellularly or between plant tissues. These ZIP proteins define a family of metal ion transporters that are found in plants, protozoa, fungi, invertebrates, and vertebrates, making it now possible to address questions of metal ion accumulation and homeostasis in diverse organisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acknowledgements The iHARP database was funded by unrestricted grants from Mundipharma International Ltd and Research in Real-Life Ltd; these analyses were funded by an unrestricted grant from Teva Pharmaceuticals. Mundipharma and Teva played no role in study conduct or analysis and did not modify or approve the manuscript. The authors wish to direct a special appreciation to all the participants of the iHARP group who contributed data to this study and to Mundipharma, sponsors of the iHARP group. In addition, we thank Julie von Ziegenweidt for assistance with data extraction and Anna Gilchrist and Valerie L. Ashton, PhD, for editorial assistance. Elizabeth V. Hillyer, DVM, provided editorial and writing support, funded by Research in Real-Life, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Open Access funded by Wellcome Trust Acknowledgements ERB is funded by the BBSRC (BB/M014525/1). DW is supported by a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (Grant Number 102549/Z/13/Z). We additionally acknowledge the MRC and University of Aberdeen for funding (MR/N006364/1) and the Wellcome Trust Strategic Award for Medical Mycology and Fungal Immunology (097377/Z/11/Z). Finally, we acknowledge FungiDB and the Candida Genome Database [ 56 and 57].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper-zinc superoxide dismutase (Cu,ZnSOD) is the antioxidant enzyme that catalyzes the dismutation of superoxide (O2•−) to O2 and H2O2. In addition, Cu,ZnSOD also exhibits peroxidase activity in the presence of H2O2, leading to self-inactivation and formation of a potent enzyme-bound oxidant. We report in this study that lipid peroxidation of l-α-lecithin liposomes was enhanced greatly during the SOD/H2O2 reaction in the presence of nitrite anion (NO2−) with or without the metal ion chelator, diethylenetriaminepentacetic acid. The presence of NO2− also greatly enhanced α-tocopherol (α-TH) oxidation by SOD/H2O2 in saturated 1,2-dilauroyl-sn-glycero-3-phosphatidylcholine liposomes. The major product identified by HPLC and UV-studies was α-tocopheryl quinone. When 1,2-diauroyl-sn-glycero-3-phosphatidylcholine liposomes containing γ-tocopherol (γ-TH) were incubated with SOD/H2O2/NO2−, the major product identified was 5-NO2-γ-TH. Nitrone spin traps significantly inhibited the formation of α-tocopheryl quinone and 5-NO2-γ-TH. NO2− inhibited H2O2-dependent inactivation of SOD. A proposed mechanism of this protection involves the oxidation of NO2− by an SOD-bound oxidant to the nitrogen dioxide radical (•NO2). In this study, we have shown a new mechanism of nitration catalyzed by the peroxidase activity of SOD. We conclude that NO2− is a suitable probe for investigating the peroxidase activity of familial Amyotrophic Lateral Sclerosis-linked SOD mutants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prolamin box (P-box) is a highly conserved 7-bp sequence element (5′-TGTAAAG-3′) found in the promoters of many cereal seed storage protein genes. Nuclear factors from maize endosperm specifically interact with the P-box present in maize prolamin genes (zeins). The presence of the P-box in all zein gene promoters suggests that interactions between endosperm DNA binding proteins and the P-box may play an important role in the coordinate activation of zein gene expression during endosperm development. We have cloned an endosperm-specific maize cDNA, named prolamin-box binding factor (PBF), that encodes a member of the recently described Dof class of plant Cys2-Cys2 zinc-finger DNA binding proteins. When tested in gel shift assays, PBF exhibits the same sequence-specific binding to the P-box as factors present in maize endosperm nuclei. Additionally, PBF interacts in vitro with the basic leucine zipper protein Opaque2, a known transcriptional activator of zein gene expression whose target site lies 20 bp downstream of the P-box in the 22-kDa zein gene promoter. The isolation of the PBF gene provides an essential tool to further investigate the functional role of the highly conserved P-box in regulating cereal storage protein gene expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have used two monovalent phage display libraries containing variants of the Zif268 DNA-binding domain to obtain families of zinc fingers that bind to alterations in the last 4 bp of the DNA sequence of the Zif268 consensus operator, GCG TGGGCG. Affinity selection was performed by altering the Zif268 operator three base pairs at a time, and simultaneously selecting for sets of 16 related DNA sequences. In this way, only four experiments were required to select for all possible 64 combinations of DNA triplet sequences. The results show that (i) for high-affinity DNA binding in the range observed for the Zif268 wild-type complex (Kd = 0.5–5 nM), finger 1 specifically requires the arginine at the carboxy terminus of its recognition helix that forms a bidentate hydrogen-bond with the guanine base (G) in the crystal structure of Zif268 complexed to its DNA operator sequence GCG TGG GCG; (ii) when the guanine base (G) is replaced by A, C, or T, a lower-affinity family (Kd ⩾ 50 nM) can be detected that shows an overall tendency to bind G-rich DNA; (iii) the residues at position 2 on the finger 2 recognition helix do not appear to interact strongly with the complementary 5′ base in the finger 1 binding site; and (iv) unexpected substitutions at the amino terminus of finger 1 can occasionally result in specificity for the 3′ base in the finger 1 binding site. A DNA recognition directory was constructed for high-affinity zinc fingers that recognize all three bases in a DNA triplet for seven sequences of the type GNN. Similar approaches may be applied to other zinc fingers to broaden the scope of the directory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To create a universal system for the control of gene expression, we have studied methods for the construction of novel polydactyl zinc finger proteins that recognize extended DNA sequences. Elsewhere we have described the generation of zinc finger domains recognizing sequences of the 5′-GNN-3′ subset of a 64-member zinc finger alphabet. Here we report on the use of these domains as modular building blocks for the construction of polydactyl proteins specifically recognizing 9- or 18-bp sequences. A rapid PCR assembly method was developed that, together with this predefined set of zinc finger domains, provides ready access to 17 million novel proteins that bind the 5′-(GNN)6-3′ family of 18-bp DNA sites. To examine the efficacy of this strategy in gene control, the human erbB-2 gene was chosen as a model. A polydactyl protein specifically recognizing an 18-bp sequence in the 5′-untranslated region of this gene was converted into a transcriptional repressor by fusion with Krüppel-associated box (KRAB), ERD, or SID repressor domains. Transcriptional activators were generated by fusion with the herpes simplex VP16 activation domain or with a tetrameric repeat of VP16’s minimal activation domain, termed VP64. We demonstrate that both gene repression and activation can be achieved by targeting designed proteins to a single site within the transcribed region of a gene. We anticipate that gene-specific transcriptional regulators of the type described here will find diverse applications in gene therapy, functional genomics, and the generation of transgenic organisms.