932 resultados para Whole-blood
Resumo:
We have demonstrated a fully covalent, signal-on E-DNA architecture based on the target-induced resolution of a DNA pseudokont. In the absence of target, the electrode-bound DNA probe adopts a pseudoknot conformation that segregates an attached methylene blue (MB) from the electrode. Upon target binding, the pseudoknot is resolved, leading to the formation of a single-stranded DNA element that supports electron transfer from the methylene blue to the electrode.
Resumo:
Vanadium has well-documented lowering glucose properties both in vitro and in vivo. The design of new oxovanadium(IV) coordination compounds, intended for use as insulin-enhancing agents in the treatment of diabetes mellitus, can potentially benefit from a synergistic approach, in which the whole complex has more than an additive effect from its component parts. Biological testing with oxovanadium(IV) organic phosphonic acid, for insulin-enhancing potential included acute administration, by oral gavage in streptozotocin (STZ) diabetic rats. The complexes of oxovanadium(IV) amino acid-N-phosphonic acid exhibit higher lowering glucose activity in vivo. The interaction of the complexes of oxovanadium(IV) amino acid-N-phosphonic acid with DNA was investigated by agarose gel electrophoresis. The results indicated that these complexes have strong interaction with DNA.
Resumo:
The speciation and distribution of Zn(II) and the effect of Gd(III) on Zn(II) speciation in human blood plasma were studied by computer simulation. The results show that, in normal blood plasma, the most predominant species of Zn(II) are [Zn(HSA)] (58.2%), [Zn(IgG)](20.1%), [Zn(Tf)] (10.4%), ternary complexes of [Zn(Cit)(Cys)] (6.6%) and of [Zn(Cys)(His)H] (1.6%), and the binary complex of [Zn(CYS)(2)H] (1.2%). When zinc is deficient, the distribution of Zn(II) species is similar to that in normal blood plasma. Then, the distribution changes with increasing zinc(II) total concentration. Overloading Zn(II) is initially mainly bound to human serum albumin (HSA). As the available amount of HSA is exceeded, phosphate metal and carbonate metal species are established. Gd(III) entering human blood plasma predominantly competes for phosphate and carbonate to form precipitate species. However, Zn(II) complexes with phosphate and carbonate are negligible in normal blood plasma, so Gd(III) only have a little effect on zinc(II) species in human blood plasma at a concentration above 1.0x10(-4) M.
Resumo:
A multi phase model of human blood plasma was developed and the Tb(Ⅲ) speciation in this system was studied. The results show that the speciation of Tb(Ⅲ) depends on the concentration of Tb(Ⅲ). When the concentration of Tb(Ⅲ) is below 4.000×10 -8 mol/L, most of Tb(Ⅲ) exists as soluble species while the concentration of Tb(Ⅲ) is in between 4.000 ×10 -8 mol/L and 1.667×10 -2 mol/L, precipitates(TbPO 4 and Tb 2 (CO 3 ) 3 ) are the dominant species of Tb(Ⅲ). Among soluble Tb(Ⅲ) ...
Resumo:
Speciation of Pr(III) in human blood plasma has been investigated by computer simulation. The speciation and distribution of Pr(III) has been obtained. It has been found that most of Pr(III) is bound to phosphate and to form precipitate. The results obtained-are in accord with experimental observations.
Resumo:
The insoluble species of Gd (III) in human blood plasma were investigated by computer simulation. The distribution of the Gd (I) species was obtained. It was found that most of the Gd (III) ions were bound to phosphate to form precipitate GdPO4 at the concentration of 1. 000 x 10(-7) mol/L and when the concentration of the Gd (III) increased to 3. 750 x 10(-4) mol/L, in excess of the concentration of phosphate, the Gd (III) ions were bound to carbonate to form another kind of precipitate, Gd-2 (CO3)(3).
Resumo:
A multi-phase model was developed and Tb(III) speciation in human blood plasma was studied. At a concentration below 3.744x 10(-4) mol/L (or at the concentration), Tb(III) is mostly bound to phosphate to form precipitate of TbPO4. As the concentration of Tb(III) increases, phosphate is exceeded and another kind of precipitate of Tb-2(CO3)(3) appears. Among soluble Tb(III) species, Tb(III) mainly distribute in [Tb (Tf)] at low concentration and in [Tb (HSAA, [Tb-2 (Tf)], [Th (IgG)], [Tb (Lactate)](2+), [Tb (CitArgH)] and free Tb(III) at high concentration.
Resumo:
Ca (II) speciation and effect of Gd (III) speciation on Ca (II) speciation in human blood plasma were studied by computer simulation. [CaHCO3](-) is a predominant compound species of Ca (II). Gd (III) can compete with Ca (II) for biological molecules. The presence of Gd (III) results in a increase of concentration of free Ca (II) and a decrease of concentration of Ca (II) compounds.
Resumo:
The interactions of lanthanium trichloride and terbium trichloride with bovine blood Cu (Zn)-superoxide dismutase [Cu(Zn)-SOD] in the aqueous solution of hexamethylenetetrarnine buffer (pH = 6.3) have been studied by using fluorescece, CD and ESR spectra. The results indicated that rare earth ions were coordinated to the carboxyl groups of acidic amino acid residues which were far from active center of the Cu(Zn)-SOD molecule and only lightly disturbed the secondary structure of the enzyme protien, and made the coordination structure of enzyme-bound CU2+ come from the rhombchedron to the axial shape at 77 K and the activity of Cu(Zn)-SOD enzyme was not nearly changed at room temperature.
Resumo:
Aim: To investigate the effect of copper on the virulence of Edwardsiella tarda. Methods and Results: The pathogenic Edw. tarda strain TX5 was cultured under copper-stressed conditions and examined for any potential alteration in capacities that are associated with pathogenicity. The results showed that compared to untreated TX5, Cu-treated TX5 exhibits reduced planktonic and biofilm growth, an impaired ability to adhere to host mucus, modulation of host immune response, and dissemination in host blood and liver. Consistent with these observations, the overall bacterial virulence of Cu-treated TX5 is significantly attenuated. SDS-PAGE analyses of whole cell protein production showed that Cu-treated TX5 differs from the untreated TX5 in its production of at least one protein. Quantitative real time reverse transcriptase PCR analyses showed that copper treatment decreased the expression of virulence-associated genes encoding components of the type III and type VI secretion systems, the Eth haemolysin system, and the LuxS/AI-2 quorum-sensing system. Conclusions: Prolonged exposure to copper has multiple effects on TX5 and results in significant attenuation of bacterial virulence. Significance and Impact of the Study: The results of this study demonstrate that copper treatment has a broad and profound effect on the virulence-associated capacities of TX5, which is exerted at least in part at the transcription level. These findings provide new insights to the antimicrobial mechanism of copper.
Resumo:
An electrochemical technique for the real-time detection of hydrogen peroxide (H2O2) was employed to describe respiratory burst activity (RBA) of phagocytes in plasma which can be used to evaluate the ability of immune system and disease resistance. The method is based upon the electric current changes, by redox reaction on platinum electrode of extracellular hydrogen peroxide (H2O2) released from phagocytes stimulated by the zymosan at 680 mV direct current (d.c.). Compared with the control, activation of respiratory burst by zymosan particles results in a high amperometric response, and a current peak was obtained during the whole monitoring process. The peak current was proved by addition Of Cu2+ and other controls, to be the result of intense release of H2O2 from phagocytes. The peak area was calculated and used to evaluate the quantity of effective H2O2, which represents the quantity of H2O2 beyond the clearance of related enzymes in plasma. According to Faraday's law, the phagocytes' ability of prawns to generate effective H2O2 was evaluated from 1.253 x 10(-14) mol/cell to 6.146 x 10(-14) mol/cell, and carp from 1.689 x 10(-15) Mol/Cell to 7.873 x 10(-1)5 mol/cell. This method is an acute and quick detection of extracellular effective H2O2 in plasma and reflects the capacity of phagocytes under natural conditions, which could be applied for selecting species and parents with high immunity for breeding in aquaculture. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Edwardsiella tarda is an important aquaculture pathogen that can infect a wide range of marine and freshwater fish worldwide. In this study, a modified E. tarda strain, TX5RM, was selected by multiple passages of the pathogenic E. tarda strain TX5 on growth medium containing the antibiotic rifampicin. Compared to the wild type strain, the rifampicin-resistant mutant TX5RM (i) shows drastically increased median lethal dose and reduced capacity to disseminate in and colonize fish tissues and blood; (ii) exhibits slower growth rates when cultured in rich medium or under conditions of iron depletion; and (iii) differs in the production profile of whole-cell proteins. The immunoprotective potential of TX5RM was examined in a Japanese flounder (Paralichthys olivaceus) model as a vaccine delivered via intraperitoneal injection, oral feeding, bath immersion, and oral feeding plus immersion. All the vaccination trials, except those of injection, were performed with a booster at 3-week after the first vaccination. The results showed that TX5RM administered via all four approaches produced significant protection, with the highest protection levels observed with TX5RM administered via oral feeding plus immersion, which were, in terms of relative percent of survival (RPS), 80.6% and 69.4% at 5- and 8-week post-vaccination, respectively. Comparable levels of specific serum antibody production were induced by TX5RM-vaccinated via different routes. Microbiological analyses showed that TX5RM was recovered from the gut, liver, and spleen of the fish at 1-10 days post-oral vaccination and from the spleen, liver, kidney, and blood of the fish at 1-14 days post-immersion vaccination. Taken together, these results indicate that TX5RM is an attenuated E. tarda strain with good vaccine potential and that a combination of oral and immersion vaccinations may be a good choice for the administration of live attenuated vaccines. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Plateau zokor (Myospalax baileyi) is one of the blind subterranean mole rats that spend their life solely underground in scaled burrows. It is one of the special species of the Qinghai-Tibet plateau. In their burrows, oxygen is low and carbon dioxide is high and their contents fluctuate with the change of seasons, soil types, rain and depth of burrows. However, plateau zokors show successful adaptation to that extreme environment. In this study, their adapting mechanisms to the hypoxic hypercapnic environment were analyzed through the comparison of their blood-gas properties with that of pikas (Ochotona curzniae) and Sprague-Dawley rats. The results indicated that plateau zokors had higher red blood corpuscle counts (8.11 +/- 0.59 (10(12)/L)) and hemoglobin concentrations (147 +/- 9.85 g/L), but hematocrit (45.9 +/- 3.29%) and mean corpuscular volume (56.67 +/- 2.57 fL) were lower than the other rodents. Their arterial blood and venous blood pH were 7.46 +/- 0.07 and 7.27 +/- 0.07. Oxygen pressure in arterial blood of plateau zokors was about 1.5 times higher than that of pikas and rats, and it was 0.36 and 0.26 times in their venous blood. Partial pressure for carbon dioxide in arterial and venous blood of plateau zokors was 1.5-fold and 2.0-fold higher, respectively, than in rats and pikas. Oxygen saturation of plateau zokors was 5.7 and 9.3 times lower in venous blood than that of pikas and rats, respectively. As result, the difference of oxygen saturation in arterial blood to venous blood was 2- and 4.5-fold higher in plateau zokors as that of pikas and rats, respectively. In conclusion, plateau zokors had a high tolerance to pH changes in tissues, together with strong capabilities to obtain oxygen from their hypoxic-hypercapnic environment. (c) 2006 Published by Elsevier Inc.