945 resultados para Wheat.
Resumo:
The authors overview integrated pest management (IPM) in grain crops in north-eastern Australia, which is defined as the area north of latitude 32°S. Major grain crops in this region include the coarse grains (winter and summer cereals), oilseeds and pulses. IPM in these systems is complicated by the diversity of crops, pests, market requirements and cropping environments. In general, the pulse crops are at greatest risk, followed by oilseeds and then by cereal grains. Insecticides remain a key grain pest management tool in north-eastern Australia. IPM in grain crops has benefited considerably through the increased adoption of new, more selective insecticides and biopesticides for many caterpillar pests, in particular Helicoverpa spp. and loopers, and the identification of pest-crop scenarios where spraying is unnecessary (e.g. for most Creontiades spp. populations in soybeans). This has favoured the conservation of natural enemies in north-eastern Australia grain crops, and has arguably assisted in the management of silverleaf whitefly in soybeans in coastal Queensland. However, control of sucking pests and podborers such as Maruca vitrata remains a major challenge for IPM in summer pulses. Because these crops have very low pest-damage tolerances and thresholds, intervention with disruptive insecticides is frequently required, particularly during podfill. The threat posed by silverleaf whitefly demands ongoing multi-pest IPM research, development and extension as this pest can flare under favourable seasonal conditions, especially where disruptive insecticides are used injudiciously. The strong links between researchers and industry have facilitated the adoption of IPM practices in north-eastern Australia and augers well for future pest challenges and for the development and promotion of new and improved IPM tactics.
Resumo:
Aphids can cause substantial damage to cereals, oilseeds and legumes through direct feeding and through the transmission of plant pathogenic viruses. Aphid-resistant varieties are only available for a limited number of crops. In Australia, growers often use prophylactic sprays to control aphids, but this strategy can lead to non-target effects and the development of insecticide resistance. Insecticide resistance is a problem in one aphid pest of Australian grains in Australia, the green peach aphid (Myzus persicae). Molecular analyses of field-collected samples demonstrate that amplified E4 esterase resistance to organophosphate insecticides is widespread in Australian grains across Australia. Knockdown resistance to pyrethroids is less abundant, but has an increased frequency in areas with known frequent use of these insecticides. Modified acetylcholinesterase resistance to dimethyl carbamates, such as pirimicarb, has not been found in Australia, nor has resistance to imidacloprid. Australian grain growers should consider control options that are less likely to promote insecticide resistance, and have reduced impacts on natural enemies. Research is ongoing in Australia and overseas to provide new strategies for aphid management in the future.
Resumo:
An integrated pest management (IPM) approach that relies on an array of tactics is adopted commonly in response to problems with pesticide-based production in many agricultural systems. Host plant resistance is often used as a fundamental component of an IPM system because of the generally compatible, complementary role that pest-resistant crops play with other tactics. Recent research and development in the resistance of legumes and cereals to aphids, sorghum midge resistance, and the resistance of canola varieties to mite and insect pests have shown the prospects of host plant resistance for developing IPM strategies against invertebrate pests in Australian grain crops. Furthermore, continuing advances in biotechnology provide the opportunity of using transgenic plants to enhance host plant resistance in grains.
Resumo:
Aims: To assay sago starch from Papua New Guinea (PNG) for important mycotoxins and to test fungal isolates from sago for mycotoxin production in culture. Methods and Results: Sago starch collected from Western and East Sepik Provinces was assayed for aflatoxins, ochratoxin A, cyclopiazonic acid, sterigmatocystin, citrinin and zearalenone and all 51 samples were negative. Frequently isolated species of Penicillium (13), Aspergillus (five) and Fusarium (one) were cultured on wheat grain, and tested for the production of ochratoxin A, cyclopiazonic acid, sterigmatocystin, citrinin, patulin and penicillic acid. All 12 isolates of P. citrinin and one of two A. flavipes isolates produced citrinin. A single isolate of A. versicolor produced sterigmatocystin. No other mycotoxins were detected in these cultures. Conclusions: No evidence was found of systemic mycotoxin contamination of sago starch. However, the isolation of several mycotoxigenic fungi shows the potential for citrinin and other mycotoxins to be produced in sago stored under special conditions. Significance and Impact of the study: Sago starch is the staple carbohydrate in lowland PNG and the absence of mycotoxins in freshly prepared sago starch is a positive finding. However, the frequent isolation of citrinin-producing fungi indicates a potential health risk for sago consumers, and food safety is dependant on promoting good storage practices.
Resumo:
Using an established genetic map, a single gene conditioning covered smut resistance, Ruh.7H, was mapped to the telomere region of chromosome 7HS in an Alexis/Sloop doubled haploid barley population. The closest marker to Ruh.7H, abg704 was 7.5 cM away. Thirteen loci on the distal end of 7HS with potential to contain single nucleotide polymorphisms (SNPs) were identified by applying a comparative genomics approach using rice sequence data. Of these, one locus produced polymorphic co-dominant bands of different size while two further loci contained SNPs that were identified using the recently developed high resolution melting (HRM) technique. Two of these markers flanked Ruh.7H with the proximal marker located 3.8 cM and the distal marker 2.7 cM away. This is the first report on the application of the HRM technique to SNP detection and to rapid scoring of known cleaved amplified polymorphic sequence (CAPS) markers in plants. This simple, precise post-PCR technique should find widespread use in the fine-mapping of genetic regions of interest in complex cereal and other plant genomes.
Resumo:
One of the pathways for transfer of cadmium (Cd) through the food chain is addition of urban wastewater solids (biosolids) to soil, and many countries have restrictions on biosolid use to minimize crop Cd contamination. The basis of these restrictions often lies in laboratory or glasshouse experimentation of soil-plant transfer of Cd, but these studies are confounded by artefacts from growing crops in controlled laboratory conditions. This study examined soil to plant (wheat grain) transfer of Cd under a wide range of field environments under typical agronomic conditions, and compared the solubility and bioavailability of Cd in biosolids to soluble Cd salts. Solubility of biosolid Cd (measured by examining Cd partitioning between soil and soil solution) was found to be equal to or greater than that of soluble Cd salts, possibly due to competing ions added with the biosolids. Conversely, bioavailability of Cd to wheat and transfer to grain was less than that of soluble Cd salts, possibly due to addition of Zn with the biosolids, causing reduced plant uptake or grain loading, or due to complexation of soluble Cd2+ by dissolved organic matter.
Resumo:
Grain produced from doubled-haploid (DH) wheat lines, developed from a hard- and a soft-grained wheat cultivar, were bulked according to Pinb (puroindoline b) genotypes for an assessment of Chinese fresh noodle texture by a trained taste panel. Each DH line was designated as 'soft' or 'hard' grained, based on a PCR amplification of the wildtype, soft allele, or the mutant, hard allele. Theoretically, the soft and hard grain bulks represented respective Pinb alleles and an independent assortment of unlinked alleles from the parents, Sunco and Chuanyu 12. Grains from the parents and DH lines were grown at 2 locations in Queensland, Australia, and one in Sichuan, China. The grains were milled and processed for a taste panel evaluation in Chengdu, Sichuan. Results suggest the Pinb alleles had a significant effect on noodle softness and explained 30% of the variation; the 'soft' Pinb allele conferred a softer noodle texture. Location had a significant effect on noodle smoothness; wheat grain grown at Biloela, Queensland, produced a smoother noodle texture than grain grown in Sichuan. The effect of location confirms the importance of environment as a variable for this quality character. This investigation exemplifies the utility of Pinb markers for specifically altering Chinese Fresh Noodle texture.
Resumo:
Highly productive sown pasture systems can result in high growth rates of beef cattle and lead to increases in soil nitrogen and the production of subsequent crops. The nitrogen dynamics and growth of grain sorghum following grazed annual legume leys or a grass pasture were investigated in a no-till system in the South Burnett district of Queensland. Two years of the tropical legumes Macrotyloma daltonii and Vigna trilobata (both self regenerating annual legumes) and Lablab purpureus (a resown annual legume) resulted in soil nitrate N (0-0.9 m depth), at sorghum sowing, ranging from 35 to 86 kg/ha compared with 4 kg/ha after pure grass pastures. Average grain sorghum production in the 4 cropping seasons following the grazed legume leys ranged from 2651 to 4012 kg/ha. Following the grass pasture, grain sorghum production in the first and second year was < 1900 kg/ha and by the third year grain yield was comparable to the legume systems. Simulation studies utilising the farming systems model APSIM indicated that the soil N and water dynamics following 2-year ley phases could be closely represented over 4 years and the prediction of sorghum growth during this time was reasonable. In simulated unfertilised sorghum crops grown from 1954 to 2004, grain yield did not exceed 1500 kg/ha in 50% of seasons following a grass pasture, while following 2-year legume leys, grain exceeded 3000 kg/ha in 80% of seasons. It was concluded that mixed farming systems that utilise short term legume-based pastures for beef production in rotation with crop production enterprises can be highly productive.
Resumo:
Dwindling water supplies for irrigation are prompting alternative management choices by irrigators. Limited irrigation, where less water is applied than full crop demand, may be a viable approach. Application of limited irrigation to corn was examined in this research. Corn was grown in crop rotations with dryland, limited irrigation, or full irrigation management from 1985 to 1999. Crop rotations included corn following corn (continuous corn), corn following wheat, followed by soybean (wheat-corn-soybean), and corn following soybean (corn-soybean). Full irrigation was managed to meet crop evapotranspiration requirements (ETc). Limited irrigation was managed with a seasonal target of no more than 150 mm applied. Precipitation patterns influenced the outcomes of measured parameters. Dryland yields had the most variation, while fully irrigated yields varied the least. Limited irrigation yields were 80% to 90%> of fully irrigated yields, but the limited irrigation plots received about half the applied water. Grain yields were significantly different among irrigation treatments. Yields were not significantly different among rotation treatments for all years and water treatments. For soil water parameters, more statistical differences were detected among the water management treatments than among the crop rotation treatments. Economic projections of these management practices showed that full irrigation produced the most income if water was available. Limited irrigation increased income significantly from dryland management.
Resumo:
Information on the effects of growing cotton (Gossypium hirsutum L.)-based crop rotations on soil quality of dryland Vertisols is sparse. The objective of this study was to quantify the effects of growing cereal and leguminous crops in rotation with dryland cotton on physical and chemical properties of a grey Vertisol near Warra, SE Queensland, Australia. The experimental treatments, selected after consultations with local cotton growers, were continuous cotton (T1), cotton-sorghum (Sorghum bicolor (L.) Moench.) (T2), cotton-wheat (Triticum aestivum L.) double cropped (T3), cotton-chickpea (Cicer arietinum L.) double cropped followed by wheat (T4) and cotton-wheat (T5). From 1993 to 1996 land preparation was by chisel ploughing to about 0.2 m followed by two to four cultivations with a Gyral tyne cultivator. Thereafter all crops were sown with zero tillage except for cultivation with a chisel plough to about 0.07-0.1 m after cotton picking to control heliothis moth pupae. Soil was sampled from 1996 to 2004 and physical (air-filled porosity of oven-dried soil, an indicator of soil compaction; plastic limit; linear shrinkage; dispersion index) and chemical (pH in 0.01 M CaCl2, organic carbon, exchangeable Ca, Mg, K and Na contents) properties measured. Crop rotation affected soil properties only with respect to exchangeable Na content and air-filled porosity. In the surface 0.15 m during 2000 and 2001 lowest air-filled porosity occurred with T1 (average of 34.6 m3/100 m3) and the highest with T3 (average of 38.9 m3/100 m3). Air-filled porosity decreased in the same depth between 1997 and 1998 from 45.0 to 36.1 m3/100 m3, presumably due to smearing and compaction caused by shallow cultivation in wet soil. In the subsoil, T1 and T2 frequently had lower air-filled porosity values in comparison with T3, T4 and T5, particularly during the early stages of the experiment, although values under T1 increased subsequently. In general, compaction was less under rotations which included a wheat crop (T3, T4, T5). For example, average air-filled porosity (in m3/100 m3) in the 0.15-0.30 m depth from 1996 to 1999 was 19.8 with both T1 and T2, and 21.2 with T3, 21.1 with T4 and 21.5 with T5. From 2000 to 2004, average air-filled porosity (in m3/100 m3) in the same depth was 21.3 with T1, 19.0 with T2, 19.8 with T3, 20.0 with T4 and 20.5 with T5. The rotation which included chickpea (T4) resulted in the lowest exchangeable Na content, although differences among rotations were small. Where only a cereal crop with a fibrous root system was sown in rotation with cotton (T2, T3, T5) linear shrinkage in the 0.45-0.60 m depth was lower than in rotations, which included tap-rooted crops such as chickpea (T4) or continuous cotton (T1). Dispersion index and organic carbon decreased, and plastic limit increased with time. Soil organic carbon stocks decreased at a rate of 1.2 Mg/ha/year. Lowest average cotton lint yield occurred with T2 (0.54 Mg/ha) and highest wheat yield with T3 (2.8 Mg/ha). Rotations which include a wheat crop are more likely to result in better soil structure and cotton lint yield than cotton-sorghum or continuous cotton.
Resumo:
The biosynthesis of the cytoplasmic subunits of cytochrome oxidase from rat liver has been studied in vitro by translating liver poly (A)-containing RNA in the wheat germ cell-free system and immunoprecipitating the products with anti-cytochrome oxidase antibody. Analysis of the labelled immunoprecipitate on SDS-gels does not reveal the presence of a polyprotein precursor. On the other hand discrete products which are either slightly bigger or closely similar to the mature subunits present in purified cytochrome oxidase have been detected.
Resumo:
The effectiveness of the neonicotinoid insecticide imidacloprid was evaluated against four psocid pests of stored grain. This research was undertaken because of the growing importance of psocids in stored grain and the need to identify methods for their control. The mortality and reproduction of adults of Liposcelis bostrychophila Badonnel, L. entomophila (Enderlein), L. decolor (Pearman) and L. paeta Pearman in wheat treated with imidacloprid were determined. There were five application rates (0.5, 1, 2, 5 and 10 mg AI kg -1 grain) and an untreated control. There were significant effects of application rate on both adult mortality and reproduction for all four species, but the effect of imidacloprid was sometimes more pronounced on reproduction. Imidacloprid was most effective against L. bostrychophila, with 100% adult mortality after 7 d at 5 mg AI kg-1, 14 d at 2 mg AI kg-1 and 28 d at 0.5 and 1 mg AI kg-1. No live progeny were produced at 2 mg AI kg-1. For L. decolor, there was 100% adult mortality after 28 d at 10 mg AI kg-1 and no live progeny were produced at 2 mg AI kg-1. For L. entomophila, there was 100% adult mortality after 14 d at 10 mg AI kg-1 and 28 d at 2 and 5 mg AI kg-1. No live progeny were produced at 10 mg AI kg-1. At 10 mg AI kg-1 there was 100% mortality of L. paeta adults after 28 d exposure and no live progeny developed. Because reproduction at some application rates occurred only in the first 14 d of exposure, it is concluded that the application rate leading to population extinction was 1 mg AI kg-1 for L. bostrychophila, 2 mg AI kg-1 for L. decolor and L. entomophila and 5 mg AI kg -1 for L. paeta. This study shows that imidacloprid has potential as a grain protectant to control all four Liposcelis species in stored grain.
Resumo:
The combined efficacy of spinosad and chlorpyrifos-methyl was determined against four storage psocid pests belonging to genus Liposcelis. This research was undertaken because of the increasing importance of these psocids in stored grain and the problem of finding grain protectants to control resistant strains. Firstly, mortality and reproduction were determined for adults exposed to wheat freshly treated with either spinosad (0.5 and 1 mg kg-1) or chlorpyrifos-methyl (2.5, 5 and 10 mg kg-1) or combinations of spinosad and chlorpyrifos-methyl at 30°C and 70% RH. There were significant effects of application rate of spinosad and chlorpyrifos-methyl, both individually and in combination, on adult mortality and progeny reduction of all four psocids. Liposcelis bostrychophila Badonnel and L. decolor (Pearman) responded similarly, with incomplete control of adults and progeny at both doses of spinosad but complete control in all chlorpyrifos-methyl and combined treatments. In L. entomophila (Enderlein) and L. paeta Pearman, however, complete control of adults and progeny was only achieved in the combined treatments, with the exception of spinosad 0.5 mg kg-1 plus chlorpyrifos-methyl 2.5 mg kg-1 against L. entomophila. Next, combinations of spinosad (0.5 and 1 mg kg-1) and chlorpyrifos-methyl (2.5, 5 and 10 mg kg-1) in bioassays after 0, 1.5 and 3 months storage of treated wheat were evaluated. The best treatment was 1 mg kg -1 of spinosad plus 10 mg kg-1 of chlorpyrifos-methyl, providing up to 3 months of protection against infestations of all four Liposcelis spp. on wheat.
Resumo:
Sorghum ergot, caused by Claviceps africana, has remained a major disease problem in Australia since it was first recorded in 1996, and is the focus of a range of biological and integrated management research. Artificial inoculation using conidial suspensions is an important tool in this research. Ergot infection is greatly influenced by environmental factors, so it is important to reduce controllable sources of variation such as inoculum concentration. The use of optical density was tested as a method of quantifying conidial suspensions of C. africana, as an alternative to haemocytometer counts. This method was found to be accurate and time efficient, with possible applications in other disease systems.
Resumo:
To quantify the role of Johnson grass, Sorghum halepense, in the population dynamics of the sorghum midge, Stenodiplosis sorghicola, patterns of flowering of Johnson grass and infestation by sorghum midge were studied in two different climatic environments in the Lockyer Valley and on the Darling Downs in south-eastern Queensland for 3 years. Parasitism levels of S. sorghicola were also recorded. In the Lockyer Valley, Johnson grass panicles were produced throughout the year but on the Darling Downs none were produced between June and September. In both areas, most panicle production occurred between November and March and infestation by S. sorghicola was the greatest during this period. The parasitism levels were between 20% and 50%. After emergence from winter diapause, one to two generations of S. sorghicola developed on S. halepense before commercial grain sorghum crops were available for infestation. Parasitoids recorded were: Aprostocetus diplosidis, Eupelmus australiensis and two species of Tetrastichus. Relationships between sorghum midge population growth rate and various environmental and population variables were investigated. Population size had a significant negative effect (P < 0.0001) on population growth rate. Mortality due to parasitism showed a significant positive density response (P < 0.0001). Temperature, rainfall, open pan evaporation, degree-days and host availability showed no significant effect on population growth rate. Given the phenology of sorghum production in south-eastern Queensland, Johnson grass provides an important bridging host, sustaining one to two generations of sorghum midge. Critical studies relating population change and build-up in sorghum to sorghum midge populations in Johnson grass are yet to be performed.