1000 resultados para West Antarctic Ice Sheet


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Twenty percent (19 genera, 95 species) of cosmopolitan, deep-sea (500-4000 m), benthic foraminiferal species became extinct during the late Pliocene-Middle Pleistocene (3-0.12 Ma), with the peak of extinctions (76 species) occurring during the mid-Pleistocene Climate Transition (MPT, 1.2-0.55 Ma). One whole family (Stilostomellidae, 30 species) was wiped out, and a second (Pleurostomellidae, 29 species) was decimated with just one species possibly surviving through to the present. Our studies at 21 deep-sea core sites show widespread pulsed declines in abundance and diversity of the extinction group species during more extreme glacials, with partial interglacial recoveries. These declines started in the late Pliocene in southern sourced deep water masses (Antarctic Bottom Water, Circumpolar Deep Water) and extending into intermediate waters (Antarctic Intermediate Water, North Atlantic Deep Water) in the MPT, with the youngest declines in sites farthest downstream from high-latitude source areas for intermediate waters. We infer that the unusual apertural types that were targeted by this extinction period were adaptations for a specific kind of food source and that it was probably the demise of this microbial food that resulted in the foraminiferal extinctions. We hypothesize that it may have been increased cold and oxygenation of the southern sourced deep water masses that impacted on this deep water microbial food source during major late Pliocene and Early Pleistocene glacials when Antarctic ice was substantially expanded. The food source in intermediate water was not impacted until major glacials in the MPT when there were significant expansion of polar sea ice in both hemispheres and major changes in the source areas, temperature, and oxygenation of global intermediate waters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent advances in the chronology and the palaeoclimatic understanding of Antarctic ice core records point towards a larger heterogeneity of latitudinal climate fluctuations than previously thought. Thus, realistic palaeoclimate reconstructions rely in the development of a tight array of well-constrained records with a dense latitudinal coverage. Climatic records from southernmost South America are critical cornerstones to link these Antarctic palaeoclimatic archives with their South American counterparts. At 54° S on the Island of Tierra del Fuego, Lago Fagnano is located in one of the most substantially and extensively glaciated regions of southernmost South America during the Late Pleistocene. This elongated lake is the largest (~110km long) and non-ice covered lake at high southern latitudes. A multi-proxy study of selected cores allows the characterisation of a Holocene sedimentary record. Detailed petrophysical, sedimentological and geochemical studies of a complete lacustrine laminated sequence reveal variations in major and trace elements, as well as organic content, suggesting high variability in environmental conditions. Comparison of these results with other regional records allows the identification of major known late Holocene climatic intervals and the proposal for a time for the onset of the Southern Westerlies in Tierra del Fuego. These results improve our understanding of the forcing mechanisms behind climate change in southernmost Patagonia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Age dating of Paleogene diamictites from ODP Site 739 in Prydz Bay with marine microfossils (diatoms and calcareous nannofossils) suggests the build-up of a major East Antarctic ice shield in latest Eocene to earliest Oligocene time, about 35-38 m.y. ago. Strontium isotopic analyses of small mollusk remains found within these diamictites, however, yield younger ages ranging from 29 to 23 Ma (i.e., latest early Oligocene to earliest Miocene). These age discrepancies could be caused by repeated glacial reworking of microfossils, macrofossils, and sediment clasts through the late Oligocene or, alternatively, by ion exchange in the still aragonitic mollusk shells.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sediments recovered from a drift deposit located on the Pacific side of the Antarctic Peninsula (ODP Leg 178, Site 1101) give a physical record of a bottom current, sourced from the Weddell Sea Deep Water, for the past 3 Ma. Sediment grain size and magnetic fabric analyses indicate a contourite depositional environment and little change in the average intensity of this current. Terrigenous fluxes decreased around the time of the onset of Northern Hemisphere Glaciation, which we interpret as a freezing of the base of the Antarctic Peninsula Ice Cap. Terrigenous fluxes have increased since 1.7 Ma implying a possible return of the Antarctic Peninsula Ice Cap to a more wet-based ice sheet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The huge ice shelves in West Antarctica -the Ross and Filchner/Ronne Ice Shelves- habe probably extended out on th continental shelf during the late Wisconsin (Stuiver et al., 1981). Previous discussions, which have focused on the Ross Sea, have suggested (1) that the ice extended across the whole continental shelf (Denton et al., 1975; Kellog et al., 1979, doi:10.1130/0091-7613(1979)7<249:LQEOTW>2.0.CO;2) or (2) that there was only a minor ecpansion (Drewry, 1979). Here we present sedimentological data from the Weddel Sea which suggests that a late Wisconsin grounded ice sheet extended to the shelfe edge. The evidence includes a recent thicker ice in Ellsworth Mountains at the head of the Filchner/Ronne Ice Shelf (Rutford et al., 1980). This thickening would lead to an expansion of the inland ice sheet over the continental shelf, filling up the Weddell Sea embayment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sedimentary accumulation of biogenic components (organic carbon, opal, and biogenic barium) on the northwestern Mexican margin declined during every glacial interval of the past 140 kyr, indicating decreases in upwelling-induced productivity during cold periods. The glacial-interglacial contrasts in upwelling on this margin are attributed to reversals in land-ocean thermal contrast, the waxing and waning of the Laurentide Ice Sheet, and consequent responses of the western hemisphere wind fields. This scenario is consistent with three independent lines of evidence: terrestrial paleoclimatic data, general circulation model results, and our marine records. This pattern of glacial-interglacial variability in upwelling off NW Mexico is opposite to that observed in other low-latitude and midlatitude upwelling areas, such as the eastern equatorial Pacific. These results add to a growing pool of observations that the response of oceanic upwelling to glacial climatic forcing has been regionally variable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stable carbon and oxygen isotopes from benthic and planktic foraminifers, planktic foraminifer assemblages and ice rafted debris from the North Atlantic Site U1314 (Integrated Ocean Drilling Program Expedition 306) were examined to investigate orbital and millennial-scale climate variability in the North Atlantic and its impact on global circulation focusing on the development of glacial periods during the mid-Pleistocene (ca 800-400 ka). Glacial initiations were characterized by a rapid cooling (6-10 °C in less than 7 kyr) in the mean annual sea surface temperature (SST), increasing benthic d18O values and high benthic d13C values. The continuous increase in benthic d18O suggests a continuous ice sheet growth whereas the positive benthic d13C values indicate that the flow of the Iceland Scotland Overflow water (ISOW) was vigorous. Strong deep water formation in the Norwegian Greenland Sea promoted a high transfer of freshwater from the ocean to the continents. However, low SSTs at Site U1314 suggest a subpolar gyre cooling and freshening that may have reduced deep water formation in the Labrador Sea during glacial initiations. Once the 3.5 per mil threshold in the benthic d18O record was exceeded, ice rafting started and ice sheet growth was punctuated by millennial-scale waning events which returned to the ocean part of the freshwater accumulated on the continents. Ice-rafting events were associated with a rapid reduction in the ISOW (benthic d13C values dropped 0.5-1 per mil) and followed by millennial-scale warmings. The first two millennial-scale warm intervals of each glacial period reached interglacial temperatures and were particularly abrupt (6-10 °C in ~3 kyr). Subsequent millennial-scale warm events were cooler probably because the AMOC was rather reduced as suggested by the low benthic d13C values. These two abrupt warming events that occurred at early glacial periods were also observed in the Antarctic temperature and CO2 records, suggesting a close correlation between both Hemispheres. The comparison of the sea surface proxies with the benthic d18O record (as the Southern sign) indicates the presence of a millennial-scale seesaw pattern similar to that seen during the Last Glacial period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antarctic ice-free areas contain lakes and ponds that have interesting limnological features and are of wide global significance as early warning indicators of climatic and environmental change. However, most limnological and paleolimnological studies in continental Antarctica are limited to certain regions. There are several ice-free areas in Victoria Land that have not yet been studied well. There is therefore a need to extend limnological studies in space and time to understand how different geological and climatic features affect the composition and biological activity of freshwater communities. With the aim of contributing to a better limnological characterization of Victoria Land, this paper reports data on sedimentary pigments (used to identify the main algal taxa) obtained through a methodology that is more sensitive and selective than that of previous studies. Analyses were extended to 48 water bodies in ice-free areas with differing lithology, latitude, and altitude, and with different morphometry and physical, chemical, and biological characteristics in order to identify environmental factors affecting the distribution and composition of freshwater autotrophic communities. A wider knowledge of lakes in a limnologically important region of Antarctica was obtained. Cyanophyta was found to be the most important algal group, followed by Chlorophyta and Bacillariophyta, whereas latitude and altitude are the main factors affecting pigment distribution.