954 resultados para Water use efficiency(WUE)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

http://digitalcommons.colby.edu/atlasofmaine2009/1026/thumbnail.jpg

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

M.R. Rocha-Pereira, A.E. Klar, D. Martins, G.S. Ferreira de Souza, and J. Villalba. 2012. Effect of water stress on herbicide efficiency applied to Urochloa decumbens. Cien. Inv. Agr. 39(1): 211-220. This project aimed to measure the control efficiency of Acctil Coenzime A Carboxilase (ACCase)-inhibiting herbicides post-emergence applied to Urochloa decumbens (Stapf) R.D. Webster under different soil water contents. The experiment was conducted in a greenhouse at the Department of Plant Production, Faculty of Agronomic Sciences, UNESP, Botucatu, Silo Paulo. The experimental design was a completely randomized design with four replications, consisting of a 9 x 4 factorial, combined with three water management systems (-0.03, -0.07 and -1.5 MPa) and three herbicides (fluazifop-p-butyl, haloxyfop-methyl and sethoxydim + oil using four doses (100, 50, 25 and 0% of the recommended dose). Herbicide applications were conducted at two vegetative stages for all species: a 4-6 leaf stage and a 2-3 tiller stage. The physiological parameters evaluated were as follows: photosynthetic rate, stomatal conductance, transpiration, leaf temperature and plant dry matter. The visual assessments of phytotoxicity were performed 28 days after herbicide application. The control efficiency was lower in plants grown under soil water potential conditions of -1.5 MPa, regardless of the herbicide used during the two application stages; however, none reached 100% control. Fractionation of the recommended herbicide doses reduced effectiveness, with the exception of the 50%-dose application of sethoxydim and fluazifop-p-butyl herbicides, which were also effective in the 4-6 leaf plant control under normal water conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The fuel cell is an emerging cogeneration technology that has been applied successfully in Japan, the USA and some countries in the European Union. This system performs direct conversion of the chemical energy of the oxidation of hydrogen from fuel with atmospheric oxygen into direct current electricity and waste heat via an electrochemical process relying on the use of different electrolytes (phosphoric acid, molten carbonate and solid oxide, depending on operating temperature). This technology permits the recovery of waste heat, available from 200 degreesC up to 1000 degreesC depending on the electrolyte technology, which can be used in the production of steam, hot or cold water, or hot or cold air, depending on the associated recuperation equipment. In this paper, an energy, exergy and economic analysis of a fuel cell cogeneration system (FCCS) is presented. The FCCS is applied in a segment of the tertiary sector to show that it is a feasible alternative for rational decentralized energy production under Brazilian conditions. The technoeconomic analysis shows a global efficiency or fuel utilization efficiency of 86%. Analysis shows that the exergy losses in the fuel cell unit and the absorption refrigeration system are significant. Furthermore, the payback period estimated is about 3 and 5 years for investments in fuel cells of 1000 and 1500 US$/kW, respectively. (C) 2001 Elsevier B.V. Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper evaluates and quantifies the environmental impact from the use of some renewable fuels and fossils fuels in internal combustion engines. The following fuels are evaluated: gasoline blended with anhydrous ethyl alcohol (anhydrous ethanol), conventional diesel fuel, biodiesel in pure form and blended with diesel fuel, and natural gas. For the case of biodiesel, its complete life cycle and the closed carbon cycle (photosynthesis) were considered. The ecological efficiency concept depends on the environmental impact caused by CO(2), SO(2), NO(x) and particulate material (PM) emissions. The exhaust gases from internal combustion engines, in the case of the gasoline (blended with alcohol), biodiesel and biodiesel blended with conventional diesel, are the less polluting; on the other hand, the most polluting are those related to conventional diesel. They can cause serious problems to the environment because of their dangerous components for the human, animal and vegetable life. The resultant pollution of each one of the mentioned fuels are analyzed, considering separately CO(2), SO(2), NO(x) and particulate material (PM) emissions. As conclusion, it is possible to calculate an environmental factor that represents, qualitatively and quantitative, the emissions in internal combustion engines that are mostly used in urban transport. Biodiesel in pure form (B100) and blended with conventional diesel as fuel for engines pollute less than conventional diesel fuel. The ecological efficiency for pure biodiesel (B100) is 86.75%: for biodiesel blended with conventional diesel fuel (B20, 20% biodiesel and 80% diesel), it is 78.79%. Finally, the ecological efficiency for conventional diesel, when used in engines, is 77.34%; for gasoline, it is 82.52%, and for natural gas, it is 91.95%. All these figures considered a thermal efficiency of 30% for the internal combustion engine. Crown Copyright (C) 2008 Published by Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Determinations of Al and Mn concentrations in the tissues (gills, hepatopancreas and muscle) of the freshwater crab Trichodactylus fluviatilis and water samples, both collected from sites on tributaries of the Corumbatai River (São Paulo, Brazil) were performed. The Bioaccumulation Factor (BAF), calculated for different sites with respect to the water concentration, ranged from 173-555 for Al and from 636 - 921 for Mn. Dissolved concentrations of Al and Mn in water samples (collected in different sites) were related to the accumulation of these metals in crabs, suggesting that T. fluviatilis is good biomonitor for Al and Mn pollution in aquatic ecosystem.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In most of the cases, the systems of water distribution from groundwater wells use electrical submersible pumps. All electrical energy is applied to the pumps; however, other components (pipes, valves, etc.) of these systems are also responsible by the higher or lower consumption of electric energy. The supervisors and operators of the systems should thus have knowledge of the global energetic behavior of the process in order to administrate it properly. This work suggests a 'Global Energetic Efficiency Indicator' for groundwater wells by using mathematical equations and neural networks. Simulation results will be presented in order to demonstrate the validity of the proposed approach.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper evaluates the efficiency of geotextile filters for sludge from a compact water treatment plant (WTP). The key aspects required in the methodology of selection and designing geotextile filters for sludge from dewatering was investigated based on laboratory tests results. The analyses were supported by the measured filtrated volume of water and turbidity resulting from variable head permeability tests carried out in two geotextiles and using the conventional granular filter (sand and gravel). The results of the present study showed that more than 75% of the dewatering sludge can be filtrated with low turbidity, which permits that this water can return to the treatment plan in order to be reuse in another cycle. The reduced volume of sludge retained by the geotextile that is transferred to the drying pound increases its efficiency by reducing the drying time. The low volume of the dry waste can be removed and the geotextile can be easily cleaned or replaced when needed. These procedures significantly reduce the volume of water needed in dewatering and also avoids waste discharges in the environment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The brown alga Pilayella littoralis was used as a new biosorbent in an on-line metal preconcentration procedure in a flow-injection system. Al, Co, Cu and Fe were determined in lake water samples by inductively coupled plasma optical emission spectrometry (ICP-OES) after preconcentration in a silica-immobilized alga column. Like other algae, P. littoralis exhibited strong affinity for these metals proving to be an effective accumulation medium. Metals were bound at pH 5.5 and were displaced at pH < 2 with diluted HCl. The enrichment factors for Cu-II, Fe-III, Al-III and Co-II were 13, 7, 16 and 11, respectively. Metal sorption efficiency ranged from 86 to 90%. The method accuracy was assessed by using drinking water certified reference material and graphite furnace atomic absorption spectrometry (GFAAS) as a comparison technique. The column procedure allowed a less time consuming, easy regeneration of the biomaterial and rigidity of the alga provided by its immobilization on silica gel. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Statement of problem. Cavity and tooth preparations generate heat because the use of rotary cutting instruments on dental tissues creates friction. Dental pulps cannot survive temperature increases greater than 5.5degreesC.Purpose. This study evaluated the efficiency of 3 different water flows for 2 different tooth preparation techniques to determine which are safe for use.Material and methods. Thermocouples were placed in the pulpal chambers of 30 bovine teeth, and 1 of 2 tooth preparation techniques was used: a low-load intermittent tooth preparation technique or a high-load tooth preparation technique without intervals. Water flows of 0, 30, and 45 mL/min were associated with each technique, for a total of 6 different groups. The results were analyzed with a 2-factor analysis of variance (P<.05).Results. Temperature increases with the high-load technique were 16.40&DEG;C without cooling (group 1), 11.68&DEG;C with 30 mL/min air-water spray cooling (group III), and 9.96&DEG;C with 45 mL/min cooling (group V). With the low-load tooth preparation technique, a 9.54&DEG;C increase resulted with no cooling (group II), a 1.56&DEG;C increase with 30 mL/min air-water spray cooling (group TV), and a 0.04&DEG;C decrease with 45 mL/min cooling (group VI). The low-load technique was associated with more ideal temperature changes.Conclusion. The results of this study confirm the necessity of using a low-load technique and water coolants during cavity and tooth preparation procedures.