921 resultados para Water levels.
Resumo:
New laboratory scale experimental data are presented on the forcing of beach groundwater levels by wave run-up. The experimental setup simulates a coastal barrier dividing the ocean from a relatively constant back beach water level, conditions approximating a closed off lagoon system or beach aquifer. The data are critically compared to an advanced numerical model for simulating wave and beach groundwater interaction in the coastal zone, and provide the first experimental verification of such a model. Overall model-data comparisons are good, but some systematic discrepancies are apparent, and reasons for these are discussed.
Resumo:
This paper presents an analysis of membrane reactor (MR) operation and design for enhanced hydrogen production from the water gas shift (WGS) reaction. It has been established that membrane reactors can enhance an equilibrium limited reaction through product separation. However, the detailed effects of reactor setup, membrane configuration and catalyst volume have yet to be properly analysed for this reaction. This paper investigates new ideas for membrane reactors such as the development of new catalytic films, for improved interaction between the reaction and separation zones. Current membrane reactors utilise a packed bed of catalyst within the membrane tube, utilising a large volume of catalyst to drive reaction. This is still inefficient and provides only limited benefits over conventional WGS reactors. New reactor configurations look to optimise the interactive effects between reaction and separation to provide improved operation. In this paper, thin film catalysts were produced using dip coating and spray coating techniques. This technique produced catalyst coatings with good thickness, though the abrasion strength of the dip coated catalyst was quite low. The catalyst was tested in a packed bed reactor for temperature activity at low temperatures and catalyst activity at varying levels of excess water
Resumo:
This paper examines the challenges of water supply in agriculture, with particular emphasis on requirements of field crops, including maize. It places the issue of water supply to agriculture in the context of increasing demands for water from alternatives users, declining quality water, pressure of increasing population, all of which are placing stresses on water availability at local, regional and national levels. The paper also examines existing freshwater resources and the potential impact of climate change on water supply and distribution and consequential impact on water stress incidence in various parts of the globe. It examines competition for water in both industrialized and developing countries, with particular emphasis on the impacts on agriculture and food supplies. The challenge of water use efficiency (WUE) in agriculture is explored with discussion of agronomic, economic and physiological WUE concepts, with specific reference to maize.
Resumo:
Ready to eat pasta meals are an important segment of convenience food, but these products are subjected to significant changes in physico-chemical properties during storage, which reduce their acceptability at the time of consumption. A deep understanding of the properties of the single phases, their dependence upon formulation, and the changes they undergo during storage is very important to intelligently intervene on products properties to improve their quality at the time of consumer’s consumption. This work has focused on the effect of formulation on physico-chemical properties of pasta and tomato sauce with a special focus on mechanical/rheological attributes and water status. Variable considered in pasta formulation were gluten, glycerol and moisture content and their effect was studied in both freshly cooked or shelf-stable cooked pasta. The effect of multiple hydrocolloids (at different levels) was considered in the case of tomato sauce. In the case of pasta, it was found that water content was indeed a very important variable in defying pasta mechanical properties and water status. Higher moisture contents in pasta resulted in softer samples and reduced the changes in physico-chemical parameters during storage. Glycerol was found to favor water uptake and to soften the pasta matrix, acting as plasticizer and increasing molecular mobility. The addition of gluten hardened pasta but did not affect the water status. The combination of higher amount of gluten (15%, g gluten / 100 g product) with higher moisture content (59-65%, g water / 100 g product) were found to minimize the physico-chemical changes occurring in RTE pasta meals during storage, improving quality at longer storage times. Hydrocolloids added into tomato sauce modulated its mechanical attributes and water status in very different manner, depending on hydrocolloid type and concentration. This may allow to produce tomato sauce for different applications and that are expected to have different performance if placed in contact with pasta in a RTE meal. Future work should include an investigation of how the interaction between the two phases (pasta and sauce) can be modulated and controlled by controlling the properties of the single phases with the goal of obtaining highly acceptable products also at longer storage times.
Resumo:
To investigate the neurotoxic effects of aluminium (Al) Al was administered: 1) in the diet of the rat (30 mg Al/kg body weight for 6 weeks); 2) as a suspension of aluminium acetate in drinking water of the rat for 3 months and 3) in a long-term study in the mouse in which aluminosilicates were incorporated into a pelleted diet (1035 mg/kg of food over 23 months). In the latter treatment, increased Al was combined with a reduction in calcium and magnesium; a treatment designed to increase absorption of Al into the body. Administration of Al in the drinking water significantly reduced total brain biopterins and BH4 synthesis. However, no significant affect of Al in the diet on total biopterins or BH4 synthesis was found either in the rat or in the long-term study in the mouse. In addition, in the mouse no significant effects of the Al diet on levels of noradrenaline, serotonin, dopamine, 5-HIAA or CAT could be demonstrated. Hence, the occurrence of brain alterations may depend on the Al species present and the method of administration. Al salts in drinking water may increase brain tissue levels compared with the administration of a more insoluble species. Since alterations in biopterin metabolism are also a feature of Alzheimer's disease (AD) these results support the hypothesis that Al in the water supply may be a factor in AD.
Resumo:
In this study we apply an index number approach to allow for cross sectional comparisons of relative profitability, productivity and price performance of the regulated Water and Sewerage companies (WaSCs) in England and Wales during the years 1991-2008. In order to better analyse the impact of regulation on WaSC performance, we decompose actual economic profits into spatial multilateral Fisher productivity (TFP) index, the inverse of which is demonstrated to be a regulatory excess cost index that measures the deviation of a firm’s actual costs from benchmark costs, and a newly developed regulatory total price performance (TPP) index, which measures the excess of regulated revenues relative to benchmark costs. Increases (decreases) in regulatory price performance are indicative of the loosening (tightening) of price cap regulation. Moreover, we also show that the relationship between actual economic profitability, regulatory excess costs and regulatory price performance indices can be used to categorize regulatory price caps as “weak”, “powerful” or “catch-up promoting”. The results indicated that throughout the entire 1991-2008 period, price caps were never “powerful”, in the sense that they required less productive firms to immediately and fully catch-up to the most productive firm to regain economic profitability. More specifically, during the years 1991-2000 price caps were “weak” as prices were high enough for the firms to achieve economic profits despite their low productivity levels. However, after 2001 prices became “catch up promoting” as they required less productive companies to eliminate at least some excess costs in order to eliminate economic losses. Finally, we emphasize that as our results also clearly demonstrated a much closer alignment between allowed revenues and benchmark costs after 2001, Ofwat’s approach during this period was not only appropriate, but should also be continued in the 2009 price review.
Resumo:
The primary objective of this research has been to determine the potential of fluorescence spectroscopy as a method for analysis of surface deposition on contact lenses. In order to achieve this it was first necessary to ascertain whether fluorescence analysis would be able to detect and distinguish between protein and lipid deposited on a lens surface. In conjunction with this it was important to determine the specific excitation wavelengths at which these deposited species were detected with the greatest sensitivity. Experimental observations showed that an excitation wavelength of 360nm would detect lipid deposited on a lens surface, and an excitation wavelength of 280nm would detect and distinguish between protein and lipid deposited on a contact lens. It was also very important to determine whether clean unspoilt lenses showed significant levels of fluorescence themselves. Fluorescence spectra recorded from a variety of unworn contact lenses at excitation wavelengths of 360nm and 280nm indicated that most contact lens materials do not fluoresce themselves to any great extent. Following these initial experiments various clinically and laboratory based studies were performed using fluorescence spectroscopy as a method of analysing contact lens deposition levels. The clinically based studies enabled analysis of contact lenses with known wear backgrounds to be rapidly and individually analysed following discontinuation of wear. Deposition levels in the early stages of lens wear were determined for various lens materials. The effect of surfactant cleaning on deposition levels was also investigated. The laboratory based studies involved comparing some of the in vivo results with those of identical lenses that had been spoilt using an in vitro method. Finally, an examination of lysosyme migration into and out of stored ionic high water contact lenses was made.
Resumo:
Water-based latices, used in the production of internal liners for beer/beverage cans, were investigated using a number of analytical techniques. The epoxy-graft-acrylic polymers, used to prepare the latices, and films, produced from those latices, were also examined. It was confirmed that acrylic polymer preferentially grafts onto higher molecular weight portions of the epoxy polymer. The amount of epoxy remaining ungrafted was determined to be 80%. This figure is higher than was previously thought. Molecular weight distribution studies were carried out on the epoxy and epoxy-g-acrylic resins. A quantitative method for determining copolymer composition using GPC was evaluated. The GPC method was also used to determine polymer composition as a function of molecular weight. IR spectroscopy was used to determine the total level of acrylic modification of the polymers and NMR was used to determine the level of grafting. Particle size determinations were carried out using transmission electron microscopy and dynamic light scattering. Levels of stabilising amine greatly affected the viscosity of the latex, particle size and amount of soluble polymer but the core particle size, as determined using TEM, was unaffected. NMR spectra of the latices produced spectra only from solvents and amine modifiers. Using solid-state CP/MAS/freezing techniques spectra from the epoxy component could be observed. FT-IR spectra of the latices were obtained after special subtraction of water. The only difference between the spectra of the latices and those of the dry film were due to the presence of the solvents in the former. A distinctive morphology in the films produced from the latices was observed. This suggested that the micelle structure of the latex survives the film forming process. If insufficient acrylic is present, large epoxy domains are produced which gives rise to poor film characteristics. Casting the polymers from organic solutions failed to produce similar morphology.
Resumo:
This research identifies factors which influence the consumption of potable water supplied to customers' property. A complete spectrum of the customer base is examined including household, commercial and industrial properties. The research considers information from around the world, particularly demand management and tariff related projects from North America. A device termed the Flow Moderator was developed and proven, with extensive trials, to conserve water at a rate equivalent to 40 litres/property/day whilst maintaining standards-of-service considerably in excess of Regulatory requirements. A detailed appraisal of the Moderator underlines the costs and benefits available to the industry through deliberate application of even mild demand management. More radically the concept of a charging policy utilising the Moderator is developed and appraised. Advantages include the lower costs of conventional fixed-price charging systems coupled with the conservation and equitability aspects associated with metering. Explanatory models were developed linking consumption to a range of variables demonstrated that households served by a communal water service-pipe (known in the UK as a shared supply) are subject to associated restrictions equivalent to -180 litres/property/day. The research confirmed that occupancy levels were a significant predictive element for household, commercial and industrial customers. The occurrence of on-property leakage was also demonstrated to be a significant factor recorded as an event which offers considerable scope for demand management in its own right.
Resumo:
The work reported in this thesis was carried out to contribute to the knowledge of the effects of substrate water availability or water activity (a ) on fungal growth parameters and its implications in the preparationw of materials susceptible to biodeterioration. Fungi were isolated from soils of different ecological sites at a range of substrate aw levels controlled by sodium chloride (NaCl). Three groups of fungi were isolated : firstly, those isolated only at high a (aw about 0.997).secondly, those isolated at high and decreasing aw (aw 0.997 to 0.85) and finally, those isolated at only decreased aw (aw O.95 to 0.80). From these isolations, test fungi were selected to study the effects of pH, temperature, exo-enzyme production and biocide efficacy at decreased aw levels, with glycerol and NaCl as a controlling solutes. The linear extension rates of the fungi increased at all test pH values near optimum a of growth. Test fungi of the Aspergillus glaucus group were found to be most resistant to low aw. Growth and survival of vegetative and fruiting bodies at elevated temperatures were enhanced with the addition of a controlling solutes. A. flavus, A. fumigatus displayed high heat resistance and A. amstelodami, A. versicolor and Penicillium citrinum displayed low heat resistance at high aw levels and vice versa at low aw levels. Amylase, lipase and protease activities were studied at lowered aw , using modifications of the test tube method of Raute11a and Cowling. Amylase and protease production in most xerophilic fungi ceased around 0.80 aw , but lipase production in some xerophilic fungi, including A. glatlcus fungi, was up to and including 0.70 aw with g1ycero1.
Resumo:
Studies have shown that the environmental conditions of the home are important predictors of health, especially in low-income communities. Understanding the relationship between the environment and health is crucial in the management of certain diseases. One health outcome related to the home environment among urban, minority, and low-income children is childhood lead poisoning. The most common sources of lead exposure for children are lead paint in older, dilapidated housing and contaminated dust and soil produced by accumulated residue of leaded gasoline. Blood lead levels (BLL) as low as 10 μg/dL in children are associated with impaired cognitive function, behavior difficulties, and reduced intelligence. Recently, it is suggested that the standard for intervention be lowered to BLL of 5 μg /dl. The objectives of our report were to assess the prevalence of lead poisoning among children under six years of age and to quantify and test the correlations between BLL in children and lead exposure levels in their environment. This cross-sectional analysis was restricted to 75 children under six years of age who lived in 6 zip code areas of inner city Miami. These locations exhibited unacceptably high levels of lead dust and soil in areas where children live and play. Using the 5 μg/dL as the cutoff point, the prevalence of lead poisoning among the study sample was 13.33%. The study revealed that lead levels in floor dust and window sill samples were positively and significantly correlated with BLL among children (p < 0.05). However, the correlations between BLL and the soil, air, and water samples were not significant. Based on this pilot study, a more comprehensive environmental study in surrounding inner city areas is warranted. Parental education on proper housecleaning techniques may also benefit those living in the high lead-exposed communities of inner city Miami.
Resumo:
This study investigated how harvest and water management affected the ecology of the Pig Frog, Rana grylio. It also examined how mercury levels in leg muscle tissue vary spatially across the Everglades. Rana grylio is an intermediate link in the Everglades food web. Although common, this inconspicuous species can be affected by three forms of anthropogenic disturbance: harvest, water management and mercury contamination. This frog is harvested both commercially and recreationally for its legs, is aquatic and thus may be susceptible to water management practices, and can transfer mercury throughout the Everglades food web. ^ This two-year study took place in three major regions: Everglades National Park (ENP), Water Conservation Areas 3A (A), and Water Conservation Area 3B (B). The study categorized the three sites by their relative harvest level and hydroperiod. During the spring of 2001, areas of the Everglades dried completely. On a regional and local scale Pig Frog abundance was highest in Site A, the longest hydroperiod, heavily harvested site, followed by ENP and B. More frogs were found along survey transects and in capture-recapture plots before the dry-down than after the dry-down in Sites ENP and B. Individual growth patterns were similar across all sites, suggesting differences in body size may be due to selective harvest. Frogs from Site A, the flooded and harvested site, had no differences in survival rates between adults and juveniles. Site B populations shifted from a juvenile to adult dominated population after the dry-down. Dry-downs appeared to affect survival rates more than harvest. ^ Total mercury in frog leg tissue was highest in protected areas of Everglades National Park with a maximum concentration of 2.3 mg/kg wet mass where harvesting is prohibited. Similar spatial patterns in mercury levels were found among pig frogs and other wildlife throughout parts of the Everglades. Pig Frogs may be transferring substantial levels of mercury to other wildlife species in ENP. ^ In summary, although it was found that abundance and survival were reduced by dry-down, lack of adult size classes in Site A, suggest harvest also plays a role in regulating population structure. ^
Resumo:
The objective of this study was to develop a model to predict transport and fate of gasoline components of environmental concern in the Miami River by mathematically simulating the movement of dissolved benzene, toluene, xylene (BTX), and methyl-tertiary-butyl ether (MTBE) occurring from minor gasoline spills in the inter-tidal zone of the river. Computer codes were based on mathematical algorithms that acknowledge the role of advective and dispersive physical phenomena along the river and prevailing phase transformations of BTX and MTBE. Phase transformations included volatilization and settling. ^ The model used a finite-difference scheme of steady-state conditions, with a set of numerical equations that was solved by two numerical methods: Gauss-Seidel and Jacobi iterations. A numerical validation process was conducted by comparing the results from both methods with analytical and numerical reference solutions. Since similar trends were achieved after the numerical validation process, it was concluded that the computer codes algorithmically were correct. The Gauss-Seidel iteration yielded at a faster convergence rate than the Jacobi iteration. Hence, the mathematical code was selected to further develop the computer program and software. The model was then analyzed for its sensitivity. It was found that the model was very sensitive to wind speed but not to sediment settling velocity. ^ A computer software was developed with the model code embedded. The software was provided with two major user-friendly visualized forms, one to interface with the database files and the other to execute and present the graphical and tabulated results. For all predicted concentrations of BTX and MTBE, the maximum concentrations were over an order of magnitude lower than current drinking water standards. It should be pointed out, however, that smaller concentrations than the latter reported standards and values, although not harmful to humans, may be very harmful to organisms of the trophic levels of the Miami River ecosystem and associated waters. This computer model can be used for the rapid assessment and management of the effects of minor gasoline spills on inter-tidal riverine water quality. ^
Resumo:
In topographically flat wetlands, where shallow water table and conductive soil may develop as a result of wet and dry seasons, the connection between surface water and groundwater is not only present, but perhaps the key factor dominating the magnitude and direction of water flux. Due to their complex characteristics, modeling waterflow through wetlands using more realistic process formulations (integrated surface-ground water and vegetative resistance) is an actual necessity. This dissertation focused on developing an integrated surface – subsurface hydrologic simulation numerical model by programming and testing the coupling of the USGS MODFLOW-2005 Groundwater Flow Process (GWF) package (USGS, 2005) with the 2D surface water routing model: FLO-2D (O’Brien et al., 1993). The coupling included the necessary procedures to numerically integrate and verify both models as a single computational software system that will heretofore be referred to as WHIMFLO-2D (Wetlands Hydrology Integrated Model). An improved physical formulation of flow resistance through vegetation in shallow waters based on the concept of drag force was also implemented for the simulations of floodplains, while the use of the classical methods (e.g., Manning, Chezy, Darcy-Weisbach) to calculate flow resistance has been maintained for the canals and deeper waters. A preliminary demonstration exercise WHIMFLO-2D in an existing field site was developed for the Loxahatchee Impoundment Landscape Assessment (LILA), an 80 acre area, located at the Arthur R. Marshall Loxahatchee National Wild Life Refuge in Boynton Beach, Florida. After applying a number of simplifying assumptions, results have illustrated the ability of the model to simulate the hydrology of a wetland. In this illustrative case, a comparison between measured and simulated stages level showed an average error of 0.31% with a maximum error of 2.8%. Comparison of measured and simulated groundwater head levels showed an average error of 0.18% with a maximum of 2.9%. The coupling of FLO-2D model with MODFLOW-2005 model and the incorporation of the dynamic effect of flow resistance due to vegetation performed in the new modeling tool WHIMFLO-2D is an important contribution to the field of numerical modeling of hydrologic flow in wetlands.